Afficher la notice abrégée

hal.structure.identifierPLANETO - LATMOS
hal.structure.identifierECLIPSE 2019
dc.contributor.authorPLURIEL, William
hal.structure.identifierPLANETO - LATMOS
dc.contributor.authorMARCQ, Emmanuel
hal.structure.identifierLaboratoire de Météorologie Dynamique (UMR 8539) [LMD]
dc.contributor.authorTURBET, Martin
dc.date.issued2019
dc.identifier.issn0019-1035
dc.description.abstractEnDuring accretion, the young rocky planets are so hot that they become endowed with a magma ocean. From that moment, the mantle convective thermal flux control the cooling of the planet and an atmosphere is created by outgassing. This atmosphere will then play a key role during this cooling phase. Studying this cooling phase in details is a necessary step to explain the great diversity of the observed telluric planets and especially to assess the presence of surface liquid water. We used here a radiative-convective 1D atmospheric model (H2O, CO2) to study the impact of the Bond albedo on the evolution of magma ocean planets. We derived from this model the thermal emission spectrum and the spectral reflectance of these planets, from which we calculated their Bond albedos. Compared to Marcq et al. (2017), the model now includes a new module to compute the Rayleigh scattering, and state of the art CO2 and H2O gaseous opacities data in the visible and infrared spectral ranges. We show that the Bond albedo of these planets depends on their surface temperature and results from a competition between Rayleigh scattering from the gases and Mie scattering from the clouds. The colder the surface temperature is, the thicker the clouds are, and the higher the Bond albedo is. We also evidence that the relative abundances of CO2 and H2O in the atmosphere strongly impact the Bond albedo. The Bond albedo is higher for atmospheres dominated by the CO2, better Rayleigh scatterer than H2O. Finally, we provide the community with an empirical formula for the Bond albedo that could be useful for future studies of magma ocean planets.
dc.language.isoen
dc.publisherElsevier
dc.title.enModeling the albedo of Earth-like magma ocean planets with H<sub>2</sub>O-CO<sub>2</sub> atmospheres
dc.typeArticle de revue
dc.identifier.doi10.1016/j.icarus.2018.08.023
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]
dc.identifier.arxiv1809.02036
bordeaux.journalIcarus
bordeaux.page583-590
bordeaux.volume317
bordeaux.peerReviewedoui
hal.identifierinsu-01865334
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//insu-01865334v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Icarus&amp;rft.date=2019&amp;rft.volume=317&amp;rft.spage=583-590&amp;rft.epage=583-590&amp;rft.eissn=0019-1035&amp;rft.issn=0019-1035&amp;rft.au=PLURIEL,%20William&amp;MARCQ,%20Emmanuel&amp;TURBET,%20Martin&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée