Mostrar el registro sencillo del ítem

hal.structure.identifierLund Observatory
dc.contributor.authorBITSCH, Bertram
dc.contributor.authorIZIDORO, André
hal.structure.identifierNiels Bohr Institute [Copenhagen] [NBI]
dc.contributor.authorJOHANSEN, Anders
hal.structure.identifierECLIPSE 2019
dc.contributor.authorRAYMOND, Sean N.
hal.structure.identifierJoseph Louis LAGRANGE [LAGRANGE]
dc.contributor.authorMORBIDELLI, Alessandro
dc.contributor.authorLAMBRECHTS, Michiel
hal.structure.identifierDepartment of Astrophysical and Planetary Sciences [Boulder]
dc.contributor.authorJACOBSON, Seth A.
dc.date.issued2019
dc.identifier.issn0004-6361
dc.description.abstractEnGiant planets migrate though the protoplanetary disc as they grow. We investigate how the formation of planetary systems depends on the radial flux of pebbles through the protoplanetary disc and on the planet migration rate. Our N-body simulations confirm previous findings that Jupiter-like planets in orbits outside the water ice line originate from embryos starting out at 20-40 AU when using nominal type-I and type-II migration rates and a pebble flux of 100-200 Earth masses per million years, enough to grow Jupiter within the lifetime of the solar nebula. The planetary embryos placed up to 30AU migrate into the inner system (r<1AU) and form super-Earths or hot and warm gas giants, producing systems that are inconsistent with the configuration of the solar system, but consistent with some exoplanetary systems. We also explore slower migration rates which allow the formation of gas giants from embryos originating from the 5-10AU region, which are stranded exterior to 1 AU at the end of the gas-disc phase. We identify a pebble flux threshold below which migration dominates and moves the planetary core to the inner disc, where the pebble isolation mass is too low for the planet to accrete gas efficiently. Giant planet growth requires a sufficiently-high pebble flux to enable growth to out-compete migration. Even higher pebble fluxes produce systems with multiple gas giants. We show that planetary embryos starting interior to 5AU do not grow into gas giants, even if migration is slow and the pebble flux is large. Instead they grow to the mass regime of super-Earths. This stunted growth is caused by the low pebble isolation mass in the inner disc and is independent of the pebble flux. Additionally we show that the long term evolution of our formed planetary systems can produce systems with hot super-Earths and outer gas giants as well as systems of giants on eccentric orbits (abridged).
dc.description.sponsorshipModélisation du processus de croissance des planètes Joviennes/ - ANR-13-BS05-0003
dc.language.isoen
dc.publisherEDP Sciences
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.title.enFormation of planetary systems by pebble accretion and migration: Growth of gas giants
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201834489
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1902.08771
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageid.A88
bordeaux.volume623
bordeaux.peerReviewedoui
hal.identifierhal-02051780
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02051780v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&amp;rft.date=2019&amp;rft.volume=623&amp;rft.spage=id.A88&amp;rft.epage=id.A88&amp;rft.eissn=0004-6361&amp;rft.issn=0004-6361&amp;rft.au=BITSCH,%20Bertram&amp;IZIDORO,%20Andr%C3%A9&amp;JOHANSEN,%20Anders&amp;RAYMOND,%20Sean%20N.&amp;MORBIDELLI,%20Alessandro&amp;rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem