Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
hal.structure.identifierUniversität Bern / University of Bern [UNIBE]
dc.contributor.authorAUCLAIR-DESROTOUR, P.
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorLECONTE, J.
hal.structure.identifierObservatoire Astronomique de l'Université de Genève [ObsGE]
dc.contributor.authorBOLMONT, E.
hal.structure.identifierAstrophysique Interprétation Modélisation [AIM (UMR_7158 / UMR_E_9005 / UM_112)]
dc.contributor.authorMATHIS, Stéphane
dc.date.issued2019
dc.identifier.issn0004-6361
dc.description.abstractEnContext. Eccentricity tides generate a torque that can drive an ocean planet towards asynchronous rotation states of equilibrium when enhanced by resonances associated with the oceanic tidal modes.Aims. We investigate the impact of eccentricity tides on the rotation of rocky planets hosting a thin uniform ocean and orbiting cool dwarf stars such as TRAPPIST-1, with orbital periods ~1−10 days.Methods. Combining the linear theory of oceanic tides in the shallow water approximation with the Andrade model for the solid part of the planet, we developed a global model including the coupling effects of ocean loading, self-attraction, and deformation of the solid regions. From this model we derive analytic solutions for the tidal Love numbers and torque exerted on the planet. These solutions are used with realistic values of parameters provided by advanced models of the internal structure and tidal oscillations of solid bodies to explore the parameter space both analytically and numerically.Results. Our model allows us to fully characterise the frequency-resonant tidal response of the planet, and particularly the features of resonances associated with the oceanic tidal modes (eigenfrequencies, resulting maxima of the tidal torque, and Love numbers) as functions of the planet parameters (mass, radius, Andrade parameters, ocean depth, and Rayleigh drag frequency). Resonances associated with the oceanic tide decrease the critical eccentricity beyond which asynchronous rotation states distinct from the usual spin-orbit resonances can exist. We provide an estimation and scaling laws for this critical eccentricity, which is found to be lowered by roughly one order of magnitude, switching from ~0.3 to ~0.06 in typical cases and to ~0.01 in extremal ones.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enplanets and satellites: terrestrial planets
dc.subject.enplanets and satellites: oceans
dc.subject.enhydrodynamics
dc.subject.enplanet
dc.subject.enstar interactions
dc.title.enFinal spin states of eccentric ocean planets
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201935905
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.description.sponsorshipEuropeStars: dynamical Processes driving tidal Interactions, Rotation and Evolution
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageA132
bordeaux.volume629
bordeaux.peerReviewedoui
hal.identifiercea-02291084
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//cea-02291084v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2019&rft.volume=629&rft.spage=A132&rft.epage=A132&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=AUCLAIR-DESROTOUR,%20P.&LECONTE,%20J.&BOLMONT,%20E.&MATHIS,%20St%C3%A9phane&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée