MaxiMask and MaxiTrack: Two new tools for identifying contaminants in astronomical images using convolutional neural networks
hal.structure.identifier | Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB] | |
dc.contributor.author | PAILLASSA, M. | |
hal.structure.identifier | Institut d'Astrophysique de Paris [IAP] | |
dc.contributor.author | BERTIN, E. | |
hal.structure.identifier | Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB] | |
dc.contributor.author | BOUY, H. | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0004-6361 | |
dc.description.abstractEn | In this work, we propose two convolutional neural network classifiers for detecting contaminants in astronomical images. Once trained, our classifiers are able to identify various contaminants, such as cosmic rays, hot and bad pixels, persistence effects, satellite or plane trails, residual fringe patterns, nebulous features, saturated pixels, diffraction spikes, and tracking errors in images. They encompass a broad range of ambient conditions, such as seeing, image sampling, detector type, optics, and stellar density. The first classifier, MaxiMask, performs semantic segmentation and generates bad pixel maps for each contaminant, based on the probability that each pixel belongs to a given contaminant class. The second classifier, MaxiTrack, classifies entire images and mosaics, by computing the probability for the focal plane to be affected by tracking errors. We gathered training and testing data from real data originating from various modern charged-coupled devices and near-infrared cameras, that are augmented with image simulations. We quantified the performance of both classifiers and show that MaxiMask achieves state-of-the-art performance for the identification of cosmic ray hits. Thanks to a built-in Bayesian update mechanism, both classifiers can be tuned to meet specific science goals in various observational contexts. | |
dc.description.sponsorship | Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003 | |
dc.description.sponsorship | FUTURE - ANR-16-IDEX-0003 | |
dc.language.iso | en | |
dc.publisher | EDP Sciences | |
dc.subject.en | surveys | |
dc.subject.en | methods: data analysis | |
dc.subject.en | techniques: image processing | |
dc.title.en | MaxiMask and MaxiTrack: Two new tools for identifying contaminants in astronomical images using convolutional neural networks | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1051/0004-6361/201936345 | |
dc.subject.hal | Physique [physics]/Astrophysique [astro-ph]/Instrumentation et méthodes pour l'astrophysique [astro-ph.IM] | |
dc.subject.hal | Informatique [cs]/Traitement des images | |
bordeaux.journal | Astronomy and Astrophysics - A&A | |
bordeaux.page | A48 | |
bordeaux.volume | 634 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-02492851 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02492851v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2020&rft.volume=634&rft.spage=A48&rft.epage=A48&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=PAILLASSA,%20M.&BERTIN,%20E.&BOUY,%20H.&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |