Afficher la notice abrégée

hal.structure.identifierObservatoire Astronomique de l'Université de Genève [ObsGE]
dc.contributor.authorTURBET, Martin
hal.structure.identifierObservatoire Astronomique de l'Université de Genève [ObsGE]
dc.contributor.authorBOLMONT, Emeline
hal.structure.identifierObservatoire Astronomique de l'Université de Genève [ObsGE]
dc.contributor.authorEHRENREICH, David
hal.structure.identifierAMOR 2020
dc.contributor.authorGRATIER, Pierre
hal.structure.identifierECLIPSE 2020
dc.contributor.authorLECONTE, Jérémy
hal.structure.identifierECLIPSE 2020
dc.contributor.authorSELSIS, Franck
hal.structure.identifierObservatoire Astronomique de l'Université de Genève [ObsGE]
dc.contributor.authorHARA, Nathan
hal.structure.identifierObservatoire Astronomique de l'Université de Genève [ObsGE]
dc.contributor.authorLOVIS, Christophe
dc.date.issued2020-06
dc.identifier.issn0004-6361
dc.description.abstractEnMass-radius relationships for water-rich rocky planets are usually calculated assuming most water is present in condensed (either liquid or solid) form. Planet density estimates are then compared to these mass-radius relationships, even when these planets are more irradiated than the runaway greenhouse irradiation limit (around 1.1 times the insolation at Earth for planets orbiting a Sun-like star), for which water has been shown to be unstable in condensed form and would instead form a thick H2O-dominated atmosphere. Here we use a 1-D radiative-convective inverse version of the LMD generic numerical climate model to derive new theoretical mass-radius relationships appropriate for water-rich rocky planets that are more irradiated than the runaway greenhouse irradiation limit, meaning planets endowed with a steam, water-dominated atmosphere. As a result of the runaway greenhouse radius inflation effect introduced in previous work, these new mass-radius relationships significantly differ from those traditionally used in the literature. For a given water-to-rock mass ratio, these new mass-radius relationships lead to planet bulk densities much lower than calculated when water is assumed to be in condensed form. In other words, using traditional mass-radius relationships for planets that are more irradiated than the runaway greenhouse irradiation limit tends to dramatically overestimate -possibly by several orders of magnitude- their bulk water content. In particular, this result applies to TRAPPIST-1 b, c, and d, which can accommodate a water mass fraction of at most 2, 0.3 and 0.08%, respectively, assuming planetary core with a terrestrial composition. In addition, we show that significant changes of mass-radius relationships (between planets less and more irradiated than the runaway greenhouse limit) can be used to remove bulk composition degeneracies in multiplanetary systems such as TRAPPIST-1. Broadly speaking, our results demonstrate that non-H2/He-dominated atmospheres can have a first-order effect on the mass-radius relationships, even for rocky planets receiving moderate irradiation. Finally, we provide an empirical formula for the H2O steam atmosphere thickness as a function of planet core gravity and radius, water content, and irradiation. This formula can easily be used to construct mass-radius relationships for any water-rich, rocky planet (i.e., with any kind of interior composition ranging from pure iron to pure silicate) more irradiated than the runaway greenhouse irradiation threshold.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enplanets and satellites: atmospheres
dc.subject.enplanets and satellites: composition
dc.subject.enplanets and satellites: terrestrial planets
dc.subject.enplanets and satellites: interiors
dc.subject.enplanets and satellites: individual: TRAPPIST-1
dc.title.enRevised mass-radius relationships for water-rich rocky planets more irradiated than the runaway greenhouse limit
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201937151
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]
dc.identifier.arxiv1911.08878
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageA41
bordeaux.volume638
bordeaux.peerReviewedoui
hal.identifierhal-02972902
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02972902v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2020-06&rft.volume=638&rft.spage=A41&rft.epage=A41&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=TURBET,%20Martin&BOLMONT,%20Emeline&EHRENREICH,%20David&GRATIER,%20Pierre&LECONTE,%20J%C3%A9r%C3%A9my&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée