Afficher la notice abrégée

hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorBABILOTTE, Joanna
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorGUDURIC, Vera
hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorLE NIHOUANNEN, Damien
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorNAVEAU, Adrien
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorFRICAIN, Jean‐Christophe
hal.structure.identifierEcole Dentaire
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorCATROS, Sylvain
dc.date.accessioned2021-06-10T07:04:07Z
dc.date.available2021-06-10T07:04:07Z
dc.date.issued2019-10-03
dc.identifier.issn1552-4973
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78954
dc.description.abstractEnApplications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three-dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state-of-the-art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579-2595, 2019.
dc.language.isoen
dc.publisherWiley
dc.subject.en3D printing
dc.subject.enbone regeneration
dc.subject.encalcium phosphate(s)
dc.subject.enceramic
dc.subject.enpolymer
dc.title.en3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization
dc.typeArticle de revue
dc.identifier.doi10.1002/jbm.b.34348
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalJournal of Biomedical Materials Research Part B: Applied Biomaterials
bordeaux.page2579-2595
bordeaux.volume107
bordeaux.hal.laboratoriesBioingénierie Tissulaire (BioTis) - U1026*
bordeaux.issue8
bordeaux.institutionCNRS
bordeaux.institutionINSERM
bordeaux.institutionCHU de Bordeaux
bordeaux.institutionInstitut Bergonié
bordeaux.peerReviewedoui
hal.identifierinserm-02870512
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//inserm-02870512v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Biomedical%20Materials%20Research%20Part%20B:%20Applied%20Biomaterials&rft.date=2019-10-03&rft.volume=107&rft.issue=8&rft.spage=2579-2595&rft.epage=2579-2595&rft.eissn=1552-4973&rft.issn=1552-4973&rft.au=BABILOTTE,%20Joanna&GUDURIC,%20Vera&LE%20NIHOUANNEN,%20Damien&NAVEAU,%20Adrien&FRICAIN,%20Jean%E2%80%90Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée