Direct numerical simulation of complex viscoelastic flows via fast lattice-Boltzmann solution of the Fokker-Planck equation
hal.structure.identifier | Instituto Tecnologico de Aragon [ITA] | |
dc.contributor.author | BERGAMASCO, Luca | |
hal.structure.identifier | Instituto Tecnologico de Aragon [ITA] | |
dc.contributor.author | IZQUIERDO, Salvador | |
hal.structure.identifier | Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA] | |
dc.contributor.author | AMMAR, Amine | |
dc.date.accessioned | 2021-05-14T10:00:33Z | |
dc.date.available | 2021-05-14T10:00:33Z | |
dc.date.issued | 2013-11 | |
dc.identifier.issn | 0377-0257 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/78139 | |
dc.description.abstractEn | Micro-macro simulations of polymeric solutions rely on the coupling between macroscopic conservation equations for the fluid flow and stochastic differential equations for kinetic viscoelastic models at the microscopic scale. In the present work we introduce a novel micro-macro numerical approach, where the macroscopic equations are solved by a finite-volume method and the microscopic equation by a lattice-Boltzmann one. The kinetic model is given by molecular analogy with a finitely extensible non-linear elastic (FENE) dumbbell and is deterministically solved through an equivalent Fokker-Planck equation. The key features of the proposed approach are: (i) a proper scaling and coupling between the micro lattice-Boltzmann solution and the macro finite-volume one; (ii) a fast microscopic solver thanks to an implementation for Graphic Processing Unit (GPU) and the local adaptivity of the lattice-Boltzmann mesh; (iii) an operator-splitting algorithm for the convection of the macroscopic viscoelastic stresses instead of the whole probability density of the dumbbell configuration. This latter feature allows the application of the proposed method to non-homogeneous flow conditions with low memory-storage requirements. The model optimization is achieved through an extensive analysis of the lattice-Boltzmann solution, which finally provides control on the numerical error and on the computational time. The resulting micro-macro model is validated against the benchmark problem of a viscoelastic flow past a confined cylinder and the results obtained confirm the validity of the approach. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.title.en | Direct numerical simulation of complex viscoelastic flows via fast lattice-Boltzmann solution of the Fokker-Planck equation | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.jnnfm.2013.07.004 | |
dc.subject.hal | Sciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph] | |
dc.subject.hal | Physique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph] | |
bordeaux.journal | Journal of Non-Newtonian Fluid Mechanics | |
bordeaux.page | 29-38 | |
bordeaux.volume | 201 | |
bordeaux.hal.laboratories | Institut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.institution | INRAE | |
bordeaux.institution | Arts et Métiers | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01061178 | |
hal.version | 1 | |
dc.subject.it | Multi-scale | |
dc.subject.it | Finite volume method | |
dc.subject.it | Lattice Boltzmann method | |
dc.subject.it | FENE kinetic model | |
dc.subject.it | GPU computing | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01061178v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Non-Newtonian%20Fluid%20Mechanics&rft.date=2013-11&rft.volume=201&rft.spage=29-38&rft.epage=29-38&rft.eissn=0377-0257&rft.issn=0377-0257&rft.au=BERGAMASCO,%20Luca&IZQUIERDO,%20Salvador&AMMAR,%20Amine&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |