Show simple item record

hal.structure.identifierLaboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorGUERCHAIS, Raphaël
hal.structure.identifierLaboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorMOREL, Franck
dc.contributor.authorSAINTIER, Nicolas
hal.structure.identifierLaboratoire des Arts et Métiers ParisTech d'Angers - Procédés Matériaux Durabilité [LAMPA - PMD]
dc.contributor.authorROBERT, Camille
dc.date.accessioned2021-05-14T09:59:18Z
dc.date.available2021-05-14T09:59:18Z
dc.date.issued2014
dc.date.conference2014-06-12
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/78031
dc.description.abstractEnIn the present study, the effects of both the microstructure and defects on the high cycle fatigue behavior of the 316L austenitic stainless steel are investigated thanks to finite element simulations of polycrystalline aggregates. The numerical analysis relies on a metallurgical and mechanical characterization. To complete the experimental study, load-controlled fatigue tests are also carried out to determine the fatigue limits at 2.106 cycles under uniaxial and multiaxial loading conditions using both smooth specimens and specimens containing an artificial hemispherical surface defect. In the finite element models, where the grain morphologies are explicitly modeled, the anisotropic behavior of each crystal is described by the generalized Hooke's law and by a single crystal visco-plastic model. From the simulations carried out with different defect sizes and orientation sets, statistical informations regarding mesoscopic mechanical fields are analyzed. Then, using the FE results, the ability of a probabilistic fatigue criterion to predict the influence of defects and biaxiality on the average fatigue limits is evaluated thanks to a comparison with the experimental data.
dc.language.isoen
dc.source.title2nd International Symposium on Fatigue Design and Material Defects
dc.title.enInfluence of the microstructure and defects on the high cycle fatigue strength of 316L stainless steel under multiaxial loading
dc.typeCommunication dans un congrès avec actes
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des matériaux [physics.class-ph]
bordeaux.page1-2
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryFR
bordeaux.title.proceeding2nd International Symposium on Fatigue Design and Material Defects
bordeaux.peerReviewedoui
hal.identifierhal-01073634
hal.version1
dc.subject.esfatigue
dc.subject.esmicrostructure
dc.subject.esdefects
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01073634v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=2nd%20International%20Symposium%20on%20Fatigue%20Design%20and%20Material%20Defects&rft.date=2014&rft.spage=1-2&rft.epage=1-2&rft.au=GUERCHAIS,%20Rapha%C3%ABl&MOREL,%20Franck&SAINTIER,%20Nicolas&ROBERT,%20Camille&rft.genre=proceeding


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record