Afficher la notice abrégée

hal.structure.identifierInstitut de Recherche Technologique Jules Verne [Bouguenais] [IRT Jules Verne]
dc.contributor.authorRAMAN, Venkadesh
hal.structure.identifierMatériaux, Assemblages, composites, Structures Instrumentées [IFSTTAR/COSYS/MACSI]
dc.contributor.authorDRISSI-HABTI, Monssef
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorGUILLAUMAT, Laurent
hal.structure.identifierLaboratoire Instrumentation, Simulation et Informatique Scientifique [IFSTTAR/COSYS/LISIS]
dc.contributor.authorKHADOUR, Aghiad
dc.date.accessioned2021-05-14T09:50:40Z
dc.date.available2021-05-14T09:50:40Z
dc.date.created2016-01-01
dc.date.issued2016-01-01
dc.identifier.issn1359-8368
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77306
dc.description.abstractOffshore wind energy is one of the main sources of renewable energy that can benefit from new generation materials that exhibit good oxidation resistance and mechanical reliability. Composite materials are the best consideration for harsh environment and deep sea wind turbine manufacturing. In this study, a numerical simulation was implemented to predict the stress distribution over a wind turbine-blade and to determine areas with high stress concentration. Finite Element Analysis (FEA) was used to find optimal material and bonding techniques to construct the blade. By using Abaqus commercial software, a finite element model of wind turbine blade was analyzed under bending-torsion coupled with a static-load condition in flap-wise direction. Structural damage in critical zones varies according to ply orientation and stack thickness as a result of composite orthotropic nature. This study leads existing scenarios and techniques which would provide a new and better solutions for wind turbine blade designers. The root section and trailing edge were found to be critical zones in the wind turbine blade. The root section failure can be reduced by (1) adjusting the thickness of the structure or increasing the number of plies in the composites laminate stacking and by (2) adjusting the bonding technique to prevent trailing-edge failure. Transverse-stitch method and the carbon cord tying methods are most effective for trailing edge reinforcement. Both solutions are proposed to reduce failures in wind turbine blades and proven by step-by-step numerical study. The goal of this study is to deliver a good reference for wind turbine blade designers and to improve the accuracy during design phase as well as to avoid failure.
dc.language.isoen
dc.publisherElsevier
dc.subjectMATERIAU COMPOSITE
dc.subjectCOLLAGE
dc.subjectENERGIE RENOUVELABLE
dc.subjectEOLIENNE
dc.subjectMETHODE DES ELEMENTS FINIS
dc.subjectMODELISATION NUMERIQUE
dc.subjectCRITERE D'ECHEC
dc.subject.enPLY STACKING
dc.title.enNumerical simulation analysis as a tool to identify areas of weakness in a turbine wind-blade and solutions for their reinforcement
dc.typeArticle de revue
dc.subject.halInformatique [cs]/Modélisation et simulation
bordeaux.journalComposites Part B: Engineering
bordeaux.pagepp 23-29
bordeaux.volume103
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01572029
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01572029v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Composites%20Part%20B:%20Engineering&rft.date=2016-01-01&rft.volume=103&rft.spage=pp%2023-29&rft.epage=pp%2023-29&rft.eissn=1359-8368&rft.issn=1359-8368&rft.au=RAMAN,%20Venkadesh&DRISSI-HABTI,%20Monssef&GUILLAUMAT,%20Laurent&KHADOUR,%20Aghiad&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée