Afficher la notice abrégée

dc.contributor.authorNIKITIN, Alexander
dc.contributor.authorSHANYAVSKIY, Andrey
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorPALIN LUC, Thierry
IDREF: 136498752
dc.date.accessioned2021-05-14T09:50:18Z
dc.date.available2021-05-14T09:50:18Z
dc.date.issued2017
dc.date.conference2017-07-03
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/77273
dc.description.abstractEnThis paper is focused on fatigue crack initiation and early growth in two-phase titanium alloy VT3-1 (similar to Ti-6Al-4V) under VHCF loads. The material was produced by two different processes: forging and extrusion. Each kind of material was investigated under three different loading types (push-pull, pull-pull and fully reversed torsion). Fracture surfaces of the tested specimens were analyzed by scanning electron microscopy (SEM) for getting information on crack initiation sites and surrounded fracture surface zones. The results of such analysis were compared with microstructure of the titanium alloy for establishing a crack initiation and early crack growth mechanisms. It was found that crack initiation in this alloy is caused by single or an agglomeration (“cluster”) of alpha-platelets. Under fully reversed tension the fatigue life seems to depend on the geometry of alpha-platelets clusters whereas under tension tension loading such dependence was not observed. However, materials with larger alpha-platelets clusters (macro-zones) have a lower VHCF resistance. The comparison of tension and torsion VHCF test results show a higher slop of the S-N curve under torsion than under tension for both forged and extruded titanium alloys. Nonetheless, some similarities in crack initiation and propagation scenarios were outlined between tension and torsion loadings.
dc.language.isoen
dc.publisherDVM
dc.subject.enCrack initiation mechanism
dc.subject.enUltrasonic torsion
dc.subject.enTitanium alloy
dc.subject.enMicrostructure
dc.title.enFatigue behaviour of two-phase titanium alloy in VHCF regime
dc.typeCommunication dans un congrès avec actes
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des matériaux [physics.class-ph]
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des solides [physics.class-ph]
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryDE
bordeaux.title.proceeding7th International Conference on Very High Cycle Fatigue
bordeaux.conference.cityDresden
bordeaux.peerReviewedoui
hal.identifierhal-01597824
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01597824v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2017&rft.au=NIKITIN,%20Alexander&SHANYAVSKIY,%20Andrey&PALIN%20LUC,%20Thierry&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée