Afficher la notice abrégée

hal.structure.identifierSchool of Surveying and Geospatial Engineering, College of Engineering, University of Tehran [SSGE]
dc.contributor.authorHOSSEINPOOR MILAGHARDAN, Amin
hal.structure.identifierSchool of Surveying and Geospatial Engineering, College of Engineering, University of Tehran [SSGE]
dc.contributor.authorABBASPOUR, Rahim Ali
hal.structure.identifierInstitut de Recherche de l'Ecole Navale [IRENAV]
dc.contributor.authorCLARAMUNT, Christophe
dc.date.accessioned2021-05-14T09:46:07Z
dc.date.available2021-05-14T09:46:07Z
dc.date.issued2018
dc.identifier.issn1099-4300
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76973
dc.description.abstractThe rapid proliferation of sensors and big data repositories offer many new opportunities for data science. Among many application domains, the analysis of large trajectory datasets generated from people’s movements at the city scale is one of the most promising research avenues still to explore. Extracting trajectory patterns and outliers in urban environments is a direction still requiring exploration for many management and planning tasks. The research developed in this paper introduces a spatio-temporal framework, so-called STE-SD (Spatio-Temporal Entropy for Similarity Detection), based on the initial concept of entropy as introduced by Shannon in his seminal theory of information and as recently extended to the spatial and temporal dimensions. Our approach considers several complementary trajectory descriptors whose distribution in space and time are quantitatively evaluated. The trajectory primitives considered include curvatures, stop-points, self-intersections and velocities. These primitives are identified and then qualified using the notion of entropy as applied to the spatial and temporal dimensions. The whole approach is experimented and applied to urban trajectories derived from the Geolife dataset, a reference data benchmark available in the city of Beijing.
dc.language.isoen
dc.publisherMDPI
dc.subjectSimilarity
dc.subjectTrajectory
dc.subjectSpatio-temporal entropy
dc.titleA Spatio-Temporal Entropy-based Framework for the Detection of Trajectories Similarity
dc.typeArticle de revue
dc.subject.halInformatique [cs]
bordeaux.journalEntropy
bordeaux.page22
bordeaux.volume20
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue490
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-01900663
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01900663v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=A%20Spatio-Temporal%20Entropy-based%20Framework%20for%20the%20Detection%20of%20Trajectories%20Similarity&rft.atitle=A%20Spatio-Temporal%20Entropy-based%20Framework%20for%20the%20Detection%20of%20Trajectories%20Similarity&rft.jtitle=Entropy&rft.date=2018&rft.volume=20&rft.issue=490&rft.spage=22&rft.epage=22&rft.eissn=1099-4300&rft.issn=1099-4300&rft.au=HOSSEINPOOR%20MILAGHARDAN,%20Amin&ABBASPOUR,%20Rahim%20Ali&CLARAMUNT,%20Christophe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée