Afficher la notice abrégée

dc.contributor.authorWANG, Yibiao
hal.structure.identifierTransferts, écoulements, fluides, énergétique [TREFLE]
hal.structure.identifierÉcole Nationale Supérieure d'Arts et Métiers [Bordeaux-Talence] [ENSAM | Bordeaux-Talence]
dc.contributor.authorAHMADI-SENICHAULT, Azita
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.date.accessioned2021-05-14T09:41:54Z
dc.date.available2021-05-14T09:41:54Z
dc.date.issued2019-02-01
dc.identifier.issn0169-3913
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76681
dc.description.abstractEnIn this work, single-phase incompressible laminar flow in 2D model porous media is studied and the influence of microscopic structural disorder on the flow is thoroughly investigated. Emphasis is laid upon the onset of the deviation from Darcy’s law and the identification of different inertia regimes observed before the flow becomes unsteady. For this purpose, six globally disordered pore structures were generated and the values of the critical Reynolds number at which the flow becomes unsteady corresponding to the first Hopf bifurcation were determined. Numerical simulations of steady laminar single-phase flow were then carried out to investigate the effects of the microstructures on the inertial correction to Darcy’s law. Different flow regimes, namely weak inertia, strong inertia and the regime beyond strong inertia, are identified. Comparisons are made with results presented in the literature which were restricted to ordered and locally disordered structures. The critical Reynolds number decreases and inertia intensity increases as more disorder is introduced into the pore structure. Results on flow inertia widely extend some previous studies on the subject and show that it is mainly influenced by the shape of the obstacles (either circular or square), slightly affected by the inclination of the square cylinders and hardly disturbed by the size distribution of theobstacles.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enCatalysis
dc.subject.enInertial one-phase flow
dc.subject.enNon-Darcy flow
dc.subject.enFlow regimes
dc.subject.enDarcy–Forchheimer
dc.subject.enGeneral Chemical Engineering
dc.title.enOn the Inertial Single Phase Flow in 2D Model Porous Media: Role of Microscopic Structural Disorder
dc.typeArticle de revue
dc.identifier.doi10.1007/s11242-019-01241-x
dc.subject.halSciences de l'ingénieur [physics]
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
bordeaux.journalTransport in Porous Media
bordeaux.page201-220
bordeaux.volume128
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02180936
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02180936v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transport%20in%20Porous%20Media&rft.date=2019-02-01&rft.volume=128&rft.issue=1&rft.spage=201-220&rft.epage=201-220&rft.eissn=0169-3913&rft.issn=0169-3913&rft.au=WANG,%20Yibiao&AHMADI-SENICHAULT,%20Azita&LASSEUX,%20Didier&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée