Afficher la notice abrégée

dc.contributor.authorEBRAHIMI, Shahin
hal.structure.identifierInstitut de Biomecanique Humaine Georges Charpak
dc.contributor.authorGAJNY, Laurent
hal.structure.identifierLaboratoire de biomécanique [LBM]
hal.structure.identifierInstitut de Biomecanique Humaine Georges Charpak
dc.contributor.authorSKALLI, Wafa
hal.structure.identifierTélécom ParisTech
dc.contributor.authorANGELINI, Elsa
dc.date.accessioned2021-05-14T09:41:52Z
dc.date.available2021-05-14T09:41:52Z
dc.date.issued2018-05-03
dc.identifier.issn2168-1163
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76678
dc.description.abstractQuantitative measurements of spine shape parameters on planar X-ray images is critical for clinical applications but remains tedious and with no fully-automated solution demonstrated on the whole spine. This study aims to limit manual input, while demonstrating precise vertebrae corners positioning and shape parameter measurements from sagittal radiographs of the cervical and lumbar regions, exploiting novel dedicated visual features and specialized classifiers.A database of manually annotated X-ray images is used to train specialized Random Forest classifiers for each spine regions and corner types. An original combination of local gradient characteristics, Haar-like features, and contextual features based on patch intensity and contrast is used as visual features. The proposed method is evaluated on 49 sagittal X-rays of asymptomatic and pathological subjects, from multiple imaging sites, and with a large age range (6 – 69 years old). Performance is first evaluated for positioning a 2D spine shape model, where precisely detected corners enable to adjust the model via an original multilinear statistical regression. Root-mean square errors (RMSE) of corners localization and vertebra orientations are reported, demonstrating state-of-the-art precision compared to existing methods, but with minimal manual input. The method is then evaluated for the extraction of additional vertebrae shape characteristics, such as centre positioning, endplate centres positioning and endplate length measures, rarely studied in previous literature.The proposed method enables, with minimal initialization, fast and precise individual vertebrae delineations on sagittal radiographs on normal and pathological cases, with a level of precision and robustness required for objective support for diagnosis and therapy decision making.
dc.language.isoen
dc.publisherTaylor & Francis
dc.subjectMachine Learning
dc.subjectBiomedical Imaging
dc.titleVertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features
dc.typeArticle de revue
dc.identifier.doi10.1080/21681163.2018.1463174
dc.subject.halInformatique [cs]
dc.subject.halMathématiques [math]
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalComputer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
bordeaux.page132-144
bordeaux.volume7
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02181802
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02181802v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Vertebral%20corners%20detection%20on%20sagittal%20X-rays%20based%20on%20shape%20modelling,%20random%20forest%20classifiers%20and%20dedicated%20visual%20features&rft.atitle=Vertebral%20corners%20detection%20on%20sagittal%20X-rays%20based%20on%20shape%20modelling,%20random%20forest%20classifiers%20and%20dedicated%20visual%20features&rft.jtitle=Computer%20Methods%20in%20Biomechanics%20and%20Biomedical%20Engineering:%20Imaging%20&%20Visualization&rft.date=2018-05-03&rft.volume=7&rft.issue=2&rft.spage=132-144&rft.epage=132-144&rft.eissn=2168-1163&rft.issn=2168-1163&rft.au=EBRAHIMI,%20Shahin&GAJNY,%20Laurent&SKALLI,%20Wafa&ANGELINI,%20Elsa&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée