Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation
hal.structure.identifier | Institut de Génétique Moléculaire de Montpellier [IGMM] | |
dc.contributor.author | OBUROGLU, L. | |
dc.contributor.author | ROMANO, M. | |
hal.structure.identifier | Institut de Génétique Moléculaire de Montpellier [IGMM] | |
dc.contributor.author | TAYLOR, N. | |
hal.structure.identifier | Institut de Génétique Moléculaire de Montpellier [IGMM] | |
dc.contributor.author | KINET, S. | |
dc.date.accessioned | 2021-05-14T09:41:49Z | |
dc.date.available | 2021-05-14T09:41:49Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1065-6251 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/76672 | |
dc.description.abstractEn | PURPOSE OF REVIEW: Hematopoietic stem cell (HSC) renewal and lineage differentiation are finely tuned processes, regulated by cytokines, transcription factors and cell-cell contacts. However, recent studies have shown that fuel utilization also conditions HSC fate. This review focuses on our current understanding of the metabolic pathways that govern HSC self-renewal, commitment and specification to the erythroid lineage. RECENT FINDINGS: HSCs reside in a hypoxic bone marrow niche that favors anaerobic glycolysis. Although this metabolic pathway is required for stem cell maintenance, other pathways also play critical roles. Fatty acid oxidation preserves HSC self-renewal by promoting asymmetric division, whereas oxidative phosphorylation induces lineage commitment. Committed erythroid progenitors support the production of 2.4 million erythrocytes per second in human adults via a synchronized regulation of iron, amino acid and glucose metabolism. Iron is indispensable for heme biosynthesis in erythroblasts; a process finely coordinated by at least two hormones, hepcidin and erythroferrone, together with multiple cell surface iron transporters. Furthermore, hemoglobin production is promoted by amino acid-induced mTOR signaling. Erythropoiesis is also strictly dependent on glutamine metabolism; under conditions where glutaminolysis is inhibited, erythropoietin-signaled progenitors are diverted to a myelomonocytic fate. Indeed, the utilization of both glutamine and glucose in de-novo nucleotide biosynthesis is a sine qua non for erythroid differentiation. SUMMARY: Diverse metabolic networks function in concert with transcriptional, translational and epigenetic programs to regulate HSC potential and orient physiological as well as pathological erythroid differentiation. | |
dc.language.iso | en | |
dc.publisher | Lippincott, Williams & Wilkins | |
dc.title.en | Metabolic regulation of hematopoietic stem cell commitment and erythroid differentiation | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1097/MOH.0000000000000234 | |
dc.subject.hal | Sciences du Vivant [q-bio]/Biochimie, Biologie Moléculaire | |
bordeaux.journal | Current Opinion in Hematology | |
bordeaux.page | 198--205 | |
bordeaux.volume | 23 | |
bordeaux.hal.laboratories | Institut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.institution | INRAE | |
bordeaux.institution | Arts et Métiers | |
hal.identifier | hal-02187336 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-02187336v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Current%20Opinion%20in%20Hematology&rft.date=2016&rft.volume=23&rft.issue=3&rft.spage=198--205&rft.epage=198--205&rft.eissn=1065-6251&rft.issn=1065-6251&rft.au=OBUROGLU,%20L.&ROMANO,%20M.&TAYLOR,%20N.&KINET,%20S.&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |