Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Etanchéité [LE]
hal.structure.identifierInstitut de mécanique des fluides de Toulouse [IMFT]
dc.contributor.authorZAOUTER, Tony
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
hal.structure.identifierInstitut de mécanique des fluides de Toulouse [IMFT]
dc.contributor.authorPRAT, Marc
dc.date.accessioned2021-05-14T09:40:47Z
dc.date.available2021-05-14T09:40:47Z
dc.date.issued2019-09-23
dc.identifier.issn2470-0045
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76600
dc.description.abstractEnRough fractures often exhibit a broad spectrum of defect length scales ranging from the microscopic (roughness) scale to a macroscopic one (waviness) and further to the megascopic scale corresponding to the entire fracture. The influence of these multiple scales and their reciprocal interactions are expected to play a significant role on the transport properties at the megascale. Focusing on the pressure-driven slightly compressible gas slip flow, a two-scale method is presented allowing the determination of the global transmissivity of a fracture on the basis of an upscaled Reynolds model. This model is applied on a tessellation of the fracture, each tile being affected by a macroscopic transmissivity tensor which encompasses the microscale transport information as a result of the first upscaling process. Then, the megascale flow problem in this structure, made of a set of tiles characterized by a heterogeneous and anisotropic transmissivity tensor field, is solved using a boundary element method. Numerical results obtained with this two-scale method are compared to the transmissivity computed with direct simulations carried out at the microscale on the whole fracture. This is performed on two model rough fractures, namely, a spiral groove and a fractal fracture, while varying their mean apertures to investigate a wide range of the average Knudsen number characteristic of the flow at the megascale. A good agreement is obtained between the two approaches showing the robustness of the two-scale method to determine the global transmissivity of the fracture while significantly reducing the overall computational time.
dc.language.isoen
dc.publisherAmerican Physical Society (APS)
dc.subject.enHeterogeneous anisotropic fracture
dc.subject.enSlip flow
dc.subject.enBoundary element method
dc.subject.enMulti-scale method
dc.title.enDetermination of the transmissivity of a heterogeneous anisotropic fracture in slip flow conditions
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevE.100.033115
dc.subject.halPhysique [physics]/Mécanique [physics]/Mécanique des fluides [physics.class-ph]
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
dc.subject.halPhysique [physics]/Physique Nucléaire Théorique [nucl-th]
dc.subject.halPhysique [physics]/Physique Nucléaire Expérimentale [nucl-ex]
bordeaux.journalPhysical Review E
bordeaux.page033115
bordeaux.volume100
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifiercea-02296537
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//cea-02296537v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20E&rft.date=2019-09-23&rft.volume=100&rft.spage=033115&rft.epage=033115&rft.eissn=2470-0045&rft.issn=2470-0045&rft.au=ZAOUTER,%20Tony&LASSEUX,%20Didier&PRAT,%20Marc&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée