Show simple item record

hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorVAUDELLE, Fabrice
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
dc.contributor.authorL’HUILLIER, Jean-Pierre
hal.structure.identifierLaboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
hal.structure.identifierEcole Supérieure des Agricultures [ESA]
dc.contributor.authorASKOURA, Mohamed Lamine
dc.date.accessioned2021-05-14T09:40:03Z
dc.date.available2021-05-14T09:40:03Z
dc.date.issued2017-06
dc.identifier.issn0030-4018
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76545
dc.description.abstractRed and near-Infrared light is often used as a useful diagnostic and imaging probe for highly scattering media such as biological tissues, fruits and vegetables. Part of diffusively reflected light gives interesting information related to the tissue subsurface, whereas light recorded at further distances may probe deeper into the interrogated turbid tissues. However, modelling diffusive events occurring at short source-detector distances requires to consider both the distribution of the light sources and the scattering phase functions. In this report, a modified Monte Carlo model is used to compute light transport in curved and multi-layered tissue samples which are covered with a thin and highly diffusing tissue layer. Different light source distributions (ballistic, diffuse or Lambertian) are tested with specific scattering phase functions (modified or not modified Henyey-Greenstein, Gegenbauer and Mie) to compute the amount of backscattered and transmitted light in apple and human skin structures. Comparisons between simulation results and experiments carried out with a multi-spectral imaging setup confirm the soundness of the theoretical strategy and may explain the role of the skin on light transport in whole and half-cut apples. Other computational results show that a Lambertian source distribution combined with a Henyey-Greenstein phase function provides a higher photon density in the stratum corneum than in the upper dermis layer. Furthermore, it is also shown that the scattering phase function may affect the shape and the magnitude of the Bidirectional Reflectance Distribution (BRDF) exhibited at the skin surface.
dc.language.isoen
dc.publisherElsevier
dc.subjectPhysical and Theoretical Chemistry
dc.subjectElectrical and Electronic Engineering
dc.subjectAtomic and Molecular Physics
dc.subjectand Optics
dc.subjectElectronic
dc.subjectOptical and Magnetic Materials
dc.titleLight source distribution and scattering phase function influence light transport in diffuse multi-layered media
dc.typeArticle de revue
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalOptics Communications
bordeaux.page268-281
bordeaux.volume392
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02333763
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02333763v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Light%20source%20distribution%20and%20scattering%20phase%20function%20influence%20light%20transport%20in%20diffuse%20multi-layered%20media&rft.atitle=Light%20source%20distribution%20and%20scattering%20phase%20function%20influence%20light%20transport%20in%20diffuse%20multi-layered%20media&rft.jtitle=Optics%20Communications&rft.date=2017-06&rft.volume=392&rft.spage=268-281&rft.epage=268-281&rft.eissn=0030-4018&rft.issn=0030-4018&rft.au=VAUDELLE,%20Fabrice&L%E2%80%99HUILLIER,%20Jean-Pierre&ASKOURA,%20Mohamed%20Lamine&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record