Show simple item record

dc.contributor.authorKOPP, Jean-Benoit
IDREF: 17687335X
hal.structure.identifierUniversité Louis Pasteur - Strasbourg I
hal.structure.identifierLaboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie [ICube]
dc.contributor.authorFOND, Christophe
hal.structure.identifierArkema [Arkema]
dc.contributor.authorHOCHSTETTER, Gilles
dc.date.accessioned2021-05-14T09:39:44Z
dc.date.available2021-05-14T09:39:44Z
dc.date.issued2018-10
dc.identifier.issn0013-7944
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76518
dc.description.abstractDynamic fracture mechanism in Polyamide 11 (PA11) material has been described at laboratory scale to access to an intrinsic material parameter. A liquid transportation application is considered with polymer pipes. A preliminary numerical analysis of the rapid crack propagation (RCP) in polymer pipe is firstly realised. Two boundary conditions, imposed displacement or pressure, are numerically investigated. The work of external forces is not negligible for pressurized polymer pipe. A reliable estimate of the dynamic energy release rate GId is in this last case not guaranteed. To limit unwanted structural effects a specific experimental device has been used to ensure a permanent regime of RCP in Pre-Stressed Pipe Specimen (PS2). Experimental dynamic fracture tests are realised with Polyamide 11 PS2. Dynamic instabilities inducing “ring-off” and “snake” mechanisms which could appear during full-scale test are not observed with this new test. A finite element procedure is used to estimate the material toughness GID of PA11. Knowing the crack tip location during RCP inertia effects (i.e. kinetic energy) are quantified. The mean crack tip velocity is observed not to change in PA11 whatever the crack configuration (branching or not). This velocity is known to be the crack branching velocity (≈0.6cR). The average dynamic energy release rate ⟨GID⟩ is equal to 1.5± 0.1 kJm−2 at the crack branching velocity. The nontrivial fracture surface roughness is observed with a scanning electron microscope.
dc.language.isoen
dc.publisherElsevier
dc.subjectRapid crack propagation Dynamic fracture Energy release rate Polyamide Pipes Finite element Inertial effects Fracture surface roughness
dc.titleRapid crack propagation in PA11: An application to pipe structure
dc.typeArticle de revue
dc.subject.halPhysique [physics]
bordeaux.journalEngineering Fracture Mechanics
bordeaux.page445-457
bordeaux.volume202
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02354515
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02354515v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Rapid%20crack%20propagation%20in%20PA11:%20An%20application%20to%20pipe%20structure&rft.atitle=Rapid%20crack%20propagation%20in%20PA11:%20An%20application%20to%20pipe%20structure&rft.jtitle=Engineering%20Fracture%20Mechanics&rft.date=2018-10&rft.volume=202&rft.spage=445-457&rft.epage=445-457&rft.eissn=0013-7944&rft.issn=0013-7944&rft.au=KOPP,%20Jean-Benoit&FOND,%20Christophe&HOCHSTETTER,%20Gilles&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record