Show simple item record

dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
hal.structure.identifierDivisión de Ciencias Básicas e Ingeniería
dc.contributor.authorVALDÈS-PARADA, Francisco
hal.structure.identifierLaboratoire d'Énergétique Moléculaire et Macroscopique, Combustion [EM2C]
dc.contributor.authorBELLET, Fabien
dc.date.accessioned2021-05-14T09:39:27Z
dc.date.available2021-05-14T09:39:27Z
dc.date.issued2019-03-10
dc.identifier.issn0022-1120
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76496
dc.description.abstractEnThe present article reports on a formal derivation of a macroscopic model for unsteady one-phase incompressible flow in rigid and periodic porous media using an upscaling technique. The derivation is carried out in the time domain in the general situation where inertia may have a significant impact. The resulting model is non-local in time and involves two effective coefficients in the macroscopic filtration law, namely a dynamic apparent permeability tensor, H t , and a vector, α, accounting for the time-decaying influence of the flow initial condition. This model generalizes previous non-local macroscale models restricted to creeping flow conditions. Ancillary closure problems are provided, which allow computing the effective coefficients. Symmetry and positiveness analyses of H t are carried out, evidencing that this tensor is symmetric only in the creeping regime. The effective coefficients are functions of time, geometry, macroscopic forcings and the initial flow condition. This is illustrated through numerical solutions of the closure problems. Predictions are made on a simple periodic structure for a wide range of Reynolds numbers smaller than the critical value characterizing the first Hopf bifurcation. Finally, the performance of the macroscopic model for a variety of macroscopic forcing and initial conditions is examined in several case studies. Validation through comparisons with direct numerical simulations is performed. It is shown that the purely heuristic classical model, widely used for unsteady flow, consisting in a Darcy-like model complemented with an accumulation term on the filtration velocity, is inappropriate.
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.title.enMacroscopic model for unsteady flow in porous media
dc.typeArticle de revue
dc.identifier.doi10.1017/jfm.2018.878
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
bordeaux.journalJournal of Fluid Mechanics
bordeaux.page283-311
bordeaux.volume862
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02006880
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02006880v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2019-03-10&rft.volume=862&rft.spage=283-311&rft.epage=283-311&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=LASSEUX,%20Didier&VALD%C3%88S-PARADA,%20Francisco&BELLET,%20Fabien&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record