Show simple item record

dc.contributor.authorLE, T.D.
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorZHANG, L.
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorKUHN, Alexander
hal.structure.identifierCentre de Recherche Paul Pascal [CRPP]
dc.contributor.authorMANO, Nicolas
hal.structure.identifierLaboratoire des Composites Thermostructuraux [LCTS]
dc.contributor.authorVIGNOLES, Gerard
IDREF: 070191875
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
dc.date.accessioned2021-05-14T09:39:24Z
dc.date.available2021-05-14T09:39:24Z
dc.date.created2019-07-30
dc.date.issued2019-07
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76490
dc.description.abstractEnMultiscale modelling of coupled diffusion and serial reduction reactions in porous micro-electrodes is developed in this work. The governing coupled equations at the pore scale in the case of two reduction reactions, as for instance, the serial reaction pathway for oxygen reduction to hydrogen peroxide and subsequently to water, are upscaled to obtain a macroscopic model describing the process in an effective medium at the electrode scale. This new macroscopic model, obtained from the volume averaging technique, is validated through comparisons with results of 3D Direct Numerical Simulations of the pore-scale model. The excellent agreement between the two approaches proves the relevance of the macroscale model which reduces to a 1D problem in the configuration under concern, providing a drastic speedup in the computation of the solution. Numerical results obtained with the macroscopic model are successfully compared to experimental data obtained by voltammetry with porous gold electrodes of different thicknesses operating the serial pathway of oxygen reduction to water. Results highlight the ability of this new macroscopic model to predict the electrode behavior and show that the second reduction reaction of hydrogen peroxide plays an important role in the current production.
dc.language.isoen
dc.publisherElsevier
dc.subject.enVolume averaging method
dc.subject.enPorous micro-electrode
dc.subject.enOxygen reduction reaction
dc.subject.enDiffusion reaction macroscopic model
dc.subject.enUpscaling
dc.title.enUpscaled model for diffusion and serial reduction pathways in porous electrodes
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jelechem.2019.113325
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
bordeaux.journalJournal of Electroanalytical Chemistry
bordeaux.page113325
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02368380
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02368380v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Electroanalytical%20Chemistry&rft.date=2019-07&rft.spage=113325&rft.epage=113325&rft.au=LE,%20T.D.&ZHANG,%20L.&KUHN,%20Alexander&MANO,%20Nicolas&VIGNOLES,%20Gerard&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record