Show simple item record

hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorDANJON, Frederic
hal.structure.identifierInstitut de Mécanique et d'Ingénierie de Bordeaux [I2M]
dc.contributor.authorKHUDER, Haifa
hal.structure.identifierBotAnique et BioinforMatique de l'Architecture des Plantes [UMR AMAP]
hal.structure.identifierBotanique et Modélisation de l'Architecture des Plantes et des Végétations [UMR AMAP]
dc.contributor.authorSTOKES, Alexia
dc.date.accessioned2021-05-14T09:35:03Z
dc.date.available2021-05-14T09:35:03Z
dc.date.issued2013
dc.identifier.issn1932-6203
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76178
dc.description.abstractEnThis study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees.
dc.language.isoen
dc.publisherPublic Library of Science
dc.title.enDeep phenotyping of coarse root architecture in R. pseudoacacia reveals that tree root system plasticity is confined within its architectural model
dc.typeArticle de revue
dc.identifier.doi10.1371/journal.pone.0083548
dc.subject.halSciences du Vivant [q-bio]
dc.subject.halSciences du Vivant [q-bio]/Ingénierie des aliments
dc.subject.halSciences de l'ingénieur [physics]/Génie des procédés
bordeaux.journalPLoS ONE
bordeaux.page15 p.
bordeaux.volume8
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue12
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02650311
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02650311v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS%20ONE&rft.date=2013&rft.volume=8&rft.issue=12&rft.spage=15%20p.&rft.epage=15%20p.&rft.eissn=1932-6203&rft.issn=1932-6203&rft.au=DANJON,%20Frederic&KHUDER,%20Haifa&STOKES,%20Alexia&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record