Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorNACHTANE, M.
hal.structure.identifierInstitut de Recherche Dupuy de Lôme [IRDL]
dc.contributor.authorTARFAOUI, Mostapha
hal.structure.identifierFaculté des Sciences Aïn Chock [Casablanca] [FSAC]
dc.contributor.authorSAIFAOUI, D.
hal.structure.identifierFaculté des Sciences Aïn Chock [Casablanca] [FSAC]
dc.contributor.authorROUWAY, M.
dc.date.accessioned2021-05-14T09:32:27Z
dc.date.available2021-05-14T09:32:27Z
dc.date.issued2019
dc.date.conference2019-12-04
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75964
dc.description.abstractEnTidal energy has clear potential in producing large amounts of energy as the world's capacity exceeds 120 GW. Despite being one of the oldest renewable energy sources exploited by man, the technology is still in its pre-commercialisation stage and so lags behind other renewable sources such as wind and geothermal energy in terms of development and energy produced. One of the emerging energy extraction technologies in the tidal energy field is the Horizontal Axis Hydrokinetic Turbine (HAHT) which harness tidal stream energy the same way Horizontal Axis Wind Turbine (HAWT) extract energy from the wind. While HAHT has been the topic of many researches over the past decade, design of hydrofoils plays a vital role in increasing the structural strength of the blade and maximizing the output of the marine current turbines. In this context, a numerical investigation is conducted in this research in which new hydrofoil for marine current turbines underwater conditions was designed and evaluated. The turbine blade is designed using XFLR5 code and QBlade which is a Blade-Element Momentum solver with a blade design feature. Then, the hydrodynamic performance of hydrofoil was tested using Computational Fluid Dynamics (CFD) consisting of lift and drag coefficients, and velocities distribution. The results showed that the new design of the hydrofoil of marine current turbine blade maintained a CPower value of 50% more from normal range at the TSR 5 to 9 and 51% more at TSR = 6,5 in the performance curve. © 2019 Elsevier Ltd. All rights reserved.
dc.language.isoen
dc.subject.enMarine current turbine
dc.subject.enHydrodynamics
dc.subject.enNew hydrofoil
dc.subject.enBE
dc.subject.enCFD
dc.title.enHydrodynamic performance evaluation of a new hydrofoil design for marine current turbines
dc.typeCommunication dans un congrès avec actes
dc.identifier.doi10.1016/j.matpr.2020.04.346
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.page889-898
bordeaux.volume30
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.countryMA
bordeaux.title.proceeding1st International Conference on Renewable Energy and Applications, ICREA 2019
bordeaux.conference.cityCasablanca
bordeaux.peerReviewedoui
hal.identifierhal-02995497
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02995497v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2019&rft.volume=30&rft.spage=889-898&rft.epage=889-898&rft.au=NACHTANE,%20M.&TARFAOUI,%20Mostapha&SAIFAOUI,%20D.&ROUWAY,%20M.&rft.genre=proceeding


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée