Afficher la notice abrégée

hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, Didier
IDREF: 131294474
hal.structure.identifierUniversidad Autonoma Metropolitana - Iztapalapa
hal.structure.identifierDepartamento de Ingeniería de Procesos e Hidráulica
dc.contributor.authorVALDÉS-PARADA, Francisco
hal.structure.identifierCombustion hétérogène et milieu poreux [Institut Pprime] [CH ]
hal.structure.identifierDépartement Fluides, Thermique et Combustion [Institut Pprime] [Département FTC]
hal.structure.identifierInstitut Pprime [UPR 3346] [PPrime [Poitiers]]
dc.contributor.authorTHOVERT, Jean-François
hal.structure.identifierDépartement Fluides, Thermique et Combustion [Institut Pprime] [Département FTC]
hal.structure.identifierCombustion hétérogène et milieu poreux [Institut Pprime] [CH ]
hal.structure.identifierInstitut Pprime [UPR 3346] [PPrime [Poitiers]]
dc.contributor.authorMOURZENKO, Valeri
dc.date.accessioned2021-05-14T09:30:49Z
dc.date.available2021-05-14T09:30:49Z
dc.date.issued2021-03-25
dc.identifier.issn0022-1120
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75842
dc.description.abstractEnThis work addresses the question of a pertinent macroscale model describing creeping, incompressible and single-phase flow of a Newtonian fluid in an exuding, rigid and homogeneous porous medium. The macroscopic model is derived by upscaling the pore-scale Stokes equations considering a normal mass flux at the solid–fluid interface. The upscaled mass equation shows that the average velocity is non-solenoidal. In addition, the macroscopic momentum equation involves a Darcy term with the classical permeability tensor accounting for macroscopic drag and a correction velocity vector which is a signature of the local fluid displacements induced by the exuding phenomenon. This correction is the sum of a term accounting for the local exuding effect and a compensation term associated with the assumption of spatial periodicity. Both the first term and the permeability tensor are obtained from the solution of the same unique and intrinsic closure problem, which corresponds to that involved in the classical Darcy’s law. The upscaled model is validated by comparisons with pore-scale numerical simulations in several illustrative examples. The different configurations evidence the richness of the problem, despite the apparent simplicity of its formulation. The results of this work motivate further investigation about the influence of internal flow sources in transport phenomena in porous media.
dc.language.isoen
dc.publisherCambridge University Press (CUP)
dc.subject.engeneral fluid mechanics
dc.subject.enporous media
dc.subject.enexuding porous media
dc.subject.enmomentum transport
dc.subject.enupscaling
dc.subject.enDarcy's law
dc.title.enExuding porous media: deviations from Darcy's law
dc.typeArticle de revue
dc.identifier.doi10.1017/jfm.2020.1081
dc.subject.halSciences de l'ingénieur [physics]/Milieux fluides et réactifs
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.journalJournal of Fluid Mechanics
bordeaux.volume911
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issueA48
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03154649
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03154649v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics&rft.date=2021-03-25&rft.volume=911&rft.issue=A48&rft.eissn=0022-1120&rft.issn=0022-1120&rft.au=LASSEUX,%20Didier&VALD%C3%89S-PARADA,%20Francisco&THOVERT,%20Jean-Fran%C3%A7ois&MOURZENKO,%20Valeri&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée