Show simple item record

hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorGHOSH, Kanka
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorKUSIAK, Andrzej
IDREF: 084712899
hal.structure.identifierLaboratoire d'électronique et des technologies de l'Information [Sfax] [LETI]
dc.contributor.authorNOÉ, Pierre
hal.structure.identifierLaboratoire d'électronique et des technologies de l'Information [Sfax] [LETI]
dc.contributor.authorCYRILLE, Marie-Claire
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorBATTAGLIA, Jean-Luc
IDREF: 084712562
dc.date.accessioned2021-05-14T09:30:21Z
dc.date.available2021-05-14T09:30:21Z
dc.date.issued2020-06
dc.identifier.issn2469-9950
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75803
dc.description.abstractEnThermal transport properties bear a pivotal role in influencing the performance of phase change memory (PCM) devices, in which the PCM operation involves fast and reversible phase change between amorphous and crystalline phases. In this paper, we present a systematic experimental and theoretical study on the thermal conductivity of GeTe at high temperatures involving fast change from amorphous to crystalline phase upon heating. Modulated photothermal radiometry (MPTR) is used to experimentally determine thermal conductivity of GeTe at high temperatures in both amorphous and crystalline phases. Thermal boundary resistances are accurately taken into account for experimental consideration. To develop a concrete understanding of the underlying physical mechanism, rigorous and in-depth theoretical exercises are carried out. For this, first-principles density functional methods and linearized Boltzmann transport equations (LBTE) are employed using both direct and relaxation time based approach (RTA) and compared with that of the phenomenological Slack model. The amorphous phase experimental data has been described using the minimal thermal conductivity model with sufficient precision. The theoretical estimation involving direct solution and RTA method are found to retrieve well the trend of the experimental thermal conductivity for crystalline GeTe at high temperatures despite being slightly overestimated and underestimated, respectively, compared to the experimental data. A rough estimate of vacancy contribution has been found to modify the direct solution in such a way that it agrees excellently with the experiment. Umklapp scattering has been determined as the significant phonon-phonon scattering process. Umldapp scattering parameter has been identified for GeTe for the whole temperature range which can uniquely determine and compare Umklapp scattering processes for different materials.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.title.enThermal conductivity of amorphous and crystalline GeTe thin film at high temperature: Experimental and theoretical study
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevB.101.214305
dc.subject.halSciences de l'ingénieur [physics]
bordeaux.journalPhysical Review B
bordeaux.volume101
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue21
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03170642
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03170642v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20B&rft.date=2020-06&rft.volume=101&rft.issue=21&rft.eissn=2469-9950&rft.issn=2469-9950&rft.au=GHOSH,%20Kanka&KUSIAK,%20Andrzej&NO%C3%89,%20Pierre&CYRILLE,%20Marie-Claire&BATTAGLIA,%20Jean-Luc&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record