Afficher la notice abrégée

dc.contributor.authorWHITESIDE, V
dc.contributor.authorMAGILL, B
dc.contributor.authorLUMB, Matthew
hal.structure.identifierInstitut Photovoltaïque d’Ile-de-France (UMR) [IPVF]
dc.contributor.authorESMAIELPOUR, Hamidreza
dc.contributor.authorMEEKER, M
dc.contributor.authorMUDIYANSELAGE, R
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorMESSAGER, A
dc.contributor.authorVIJEYARAGUNATHAN, S
hal.structure.identifierCenter for Advanced Marine Core Research
dc.contributor.authorMISHIMA, T
dc.contributor.authorSANTOS, M
dc.contributor.authorVURGAFTMAN, I
dc.contributor.authorKHODAPARAST, G
dc.contributor.authorSELLERS, I
dc.date.accessioned2021-05-14T09:29:47Z
dc.date.available2021-05-14T09:29:47Z
dc.date.issued2019-02-01
dc.identifier.issn0268-1242
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/75755
dc.description.abstractEnIn this study, detailed temperature dependent simulations for absorption and photogenerated recombination of hot electrons are compared with experimental data for an InAs/AlAsSb multi-quantum well. The simulations describe the actual photoluminescence (PL) observations accurately; in particular, the room temperature e1-hh1 simulated transition energy of 805 meV closely matches the 798 meV transition energy of the experimental PL spectra, a difference of only 7 meV. Likewise, the expected energy separations between local maxima (p1-p2) in the simulated/experimental spectra have a difference of just 2 meV: a simulated energy separation of 31 meV compared to the experimental value of 33 meV. Utilizing a non equilibrium generalized Planck relation, a full spectrum fit enables individual carrier temperatures for both holes and electrons. This results in two very different carrier temperatures for holes and electrons: where the hole temperature, T-h, is nearly equal to the lattice temperature, T-L; while, the electron temperature, T-e, is 'hot' (i.e., T-e > T-L). Also, by fitting the experimental spectra via three different methods a 'hot' carrier temperature is associated with electrons only; all three methods yield similar 'hot' carrier temperatures.
dc.language.isoen
dc.publisherIOP Publishing
dc.subject.enhot carriers
dc.subject.entype-II band alignment
dc.subject.envalence band states
dc.subject.enphotovoltaics
dc.title.enValence band states in an InAs/AlAsSb multi-quantum well hot carrier absorber
dc.typeArticle de revue
dc.identifier.doi10.1088/1361-6641/aae4c3
dc.subject.halPhysique [physics]/Physique [physics]/Optique [physics.optics]
dc.subject.halSciences de l'ingénieur [physics]/Micro et nanotechnologies/Microélectronique
dc.subject.halSciences de l'ingénieur [physics]/Optique / photonique
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.journalSemiconductor Science and Technology
bordeaux.page025005
bordeaux.volume34
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-03223029
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03223029v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Semiconductor%20Science%20and%20Technology&rft.date=2019-02-01&rft.volume=34&rft.issue=2&rft.spage=025005&rft.epage=025005&rft.eissn=0268-1242&rft.issn=0268-1242&rft.au=WHITESIDE,%20V&MAGILL,%20B&LUMB,%20Matthew&ESMAIELPOUR,%20Hamidreza&MEEKER,%20M&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée