Régularité maximale des équations d’évolution non-autonomes
Langue
en
Thèses de doctorat
Date de soutenance
2018-03-05Spécialité
Mathematiques pures
École doctorale
École doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)Résumé
Cette thèse est dédiée a l’étude de certaines propriétés des équations d’évolutions non-autonomes u0(t) +A(t)u(t) = f(t); u(0) = x: Il s’agit précisément de la propriété de la régularité maximale Lp: étant donnée f 2 Lp(0; ...Lire la suite >
Cette thèse est dédiée a l’étude de certaines propriétés des équations d’évolutions non-autonomes u0(t) +A(t)u(t) = f(t); u(0) = x: Il s’agit précisément de la propriété de la régularité maximale Lp: étant donnée f 2 Lp(0; T ;H), montrer l’existence et l’unicité de la solution u 2 W1;p(0; T ;H). Ce problème a été intensivement étudié dans le cas autonome, i.e., A(t) = A pour tout t. Dans le cas non-autonome, le problème a été considéré par J.L.Lions en 1960. Nous montrons divers résultats qui étendent tout ce qui est connu sur ce problème. On suppose ici que la famille des opérateurs (A(t))t2[0;T ] est associée à des formes quasi-coercives, non autonomes (a(t))t2[0;T ]: Nous considérons également le problème de régularité maximale pour les équations d’ordre 2 (équations des ondes). Plusieurs exemples et applications sont considérés.< Réduire
Résumé en anglais
This Thesis is devoted to certain properties of non-autonomous evolution equations u0(t) +A(t)u(t) = f(t); u(0) = x: More precisely, we are interested in the maximal Lp-regularity: given f 2 Lp(0; T ;H); prove existence ...Lire la suite >
This Thesis is devoted to certain properties of non-autonomous evolution equations u0(t) +A(t)u(t) = f(t); u(0) = x: More precisely, we are interested in the maximal Lp-regularity: given f 2 Lp(0; T ;H); prove existence and uniqueness of the solution u 2 W1;p(0; T ;H). This problem was intensively studied in the autonomous case, i.e., A(t) = A for all t: In the non-autonomous cas, the problem was considered by J.L.Lions in 1960. We prove serval results which extend all previously known ones on this problem. Here we assume that the familly of the operators (A(t))t2[0;T ] is associated with quasi-coercive, non-autonomous forms (a(t))t2[0;T ]: We also consider the problem of maximal regularity for second order equations (the wave equation). Serval examples and applications are given in this Thesis.< Réduire
Mots clés
Formes sesquilinéaire
Régularité de Besov
Régularité de Sobolev
Équation des ondes
Régularité maximale
Équation parabolique
Mots clés en anglais
Sesquilinear forms
Besov regularity
Sobolev regularity
Wave equation
Maximal regularity
Parabolic equation
Origine
Importé de STARUnités de recherche