Evaluation de la fiabilité de diodes Laser 1064nm en régime impulsionnel critique pour des applications "seed" de laser à fibre forte puissance
Langue
fr
Thèses de doctorat
Date de soutenance
2017-03-31Spécialité
Electronique
École doctorale
École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)Résumé
Un nombre croissant d’applications Laser nécessite l’utilisation de sources impulsionnelles présentant une grande modularité en termes de durée, de puissance et de fréquence des impulsions Laser générées. Ces sources ...Lire la suite >
Un nombre croissant d’applications Laser nécessite l’utilisation de sources impulsionnelles présentant une grande modularité en termes de durée, de puissance et de fréquence des impulsions Laser générées. Ces sources s’appuient sur une architecture bien connue, basée sur un amplificateur de puissance à oscillateur maître (MOPA) et intégrée dans un grand nombre de systèmes d’amplification optique. Généralement, elle se compose d’une diode « seed » jouant le rôle d’un oscillateur « source » et pilotée en régime impulsionnel fournissant des impulsions optiques à un étage d’amplification (solide ou fibré), dopé avec des éléments terres rares (ex. Ytterbium). Néanmoins, la puissance crête émise par ce type de diodes dépasse rarement quelques centaines de mW. Afin d’obtenir, en sortie du « MOPA », des impulsions d’une puissance de plusieurs dizaines de kW, il est donc nécessaire de concevoir une chaîne d’amplification optique possédant un gain élevé mais en contrepartie susceptible de générer des phénomènes optiques non-linéaires néfastes à l’application. L’utilisation de diodes Laser monomode commercialisées, à très haute fiabilité, dans des régimes de polarisation en courant crête très élevé mais sous des durées d’impulsion très courtes (très inférieures à 1μs), apparaît comme une solution alternative mais impose d’être validée tant sur le plan de la caractérisation électro-optique de ces diodes que sur la robustesse de leurs performances dans ces régimes critiques de fonctionnement.< Réduire
Résumé en anglais
A growing number of Laser applications requires the use of pulsed sources with a large versatility in terms of duration, power and frequency of the generated Laser pulses. Such sources are based on the well-established ...Lire la suite >
A growing number of Laser applications requires the use of pulsed sources with a large versatility in terms of duration, power and frequency of the generated Laser pulses. Such sources are based on the well-established “Master Optical Power Amplifier” architecture, and integrated into a large variety of optical amplification systems. Generally, it is composed of a “seed” diode, acting as a “source” oscillator, operated in pulse regime in order to produce optical pulses forwarded to an amplification stage (solid or fibered), doped with rare earth elements (ex. Ytterbium). However, the maximum output power delivered by such diodes barely reaches a few hundred mW. In order for the “MOPA” to produce output pulses with a peak power reaching a few tens of kW, it is necessary to design an amplification chain with a high optical gain but on the other hand susceptible to generate non-linear phenomena detrimental to the application. The use of commercialized and ultra-reliable single mode Laser diodes, operating in large overcurrent but under short pulse conditions (under 1μs), appears as an alternative solution, which, however, requires to be validated in terms of electro-optical characterizations as well as in terms of performances robustness under these critical conditions.< Réduire
Mots clés
Fiabilité
Diode
Laser
1064nm
Impulsionnel
Seed
Mots clés en anglais
Reliability
Laser
Diode
1064nm
Pulsed
Seed
Origine
Importé de STAR