Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorPIROG, Antoine
dc.contributor.authorPERRIER, Romain
dc.contributor.authorRAOUX, Matthieu
dc.contributor.authorJAFFREDO, Manon
dc.contributor.authorQUOTB, Adam
dc.contributor.authorLANG, Jochen
dc.contributor.authorLEWIS, Noelle
dc.contributor.authorRENAUD, Sylvie
dc.date.accessioned2020-03-26T17:10:07Z
dc.date.available2020-03-26T17:10:07Z
dc.date.issued2018
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/3948
dc.description.abstractEnEnhanced understanding and control of electrophysiology mechanisms are increasingly being hailed as key knowledge in the fields of modern biology and medicine. As more and more excitable cell mechanics are being investigated and exploited, the need for flexible electrophysiology setups becomes apparent. With that aim, we designed Multimed, which is a versatile hardware platform for the real-time recording and processing of biosignals. Digital processing in Multimed is an arrangement of generic processing units from a custom library. These can freely be rearranged to match the needs of the application. Embedded onto a Field Programmable Gate Array (FPGA), these modules utilize full-hardware signal processing to lower processing latency. It achieves constant latency, and sub-millisecond processing and decision-making on 64 channels. The FPGA core processing unit makes Multimed suitable as either a reconfigurable electrophysiology system or a prototyping platform for VLSI implantable medical devices. It is specifically designed for open- and closed-loop experiments and provides consistent feedback rules, well within biological microseconds timeframes. This paper presents the specifications and architecture of the Multimed system, then details the biosignal processing algorithms and their digital implementation. Finally, three applications utilizing Multimed in neuroscience and diabetes research are described. They demonstrate the system’s configurability, its multi-channel, real-time processing, and its feedback control capabilities.
dc.description.sponsorshipSenseur Hybride Bioélectronique du Pancréas endocrine (Criblage et Thérapie du Diabète)en_US
dc.description.sponsorshipISLET CHIP: Contrôle de Qualité d’Îlots pour la Greffe - ANR-13-PRTS-0017en_US
dc.description.sponsorshipHYbridation de REseaux de Neurones pour l'exploration de fonctions de réhabilitation - ANR-10-BLAN-0316en_US
dc.language.isoENen_US
dc.subject.enbiosignal processing
dc.subject.enelectrophysiology
dc.subject.enFPGA
dc.subject.enmulti-application
dc.subject.enmulti-channel
dc.subject.enneural recording
dc.subject.enpancreatic islet recording
dc.subject.enreal-time
dc.title.enMultimed: An Integrated, Multi-Application Platform for the Real-Time Recording and Sub-Millisecond Processing of Biosignals
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/s18072099en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalSENSORSen_US
bordeaux.page2099en_US
bordeaux.volume18en_US
bordeaux.hal.laboratoriesInstitut de Chimie & de Biologie des Membranes & des Nano-objets (CBMN) - UMR 5248
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-02520651
hal.version1
hal.date.transferred2020-03-26T17:12:36Z
hal.exporttrue
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SENSORS&rft.date=2018&rft.volume=18&rft.spage=2099&rft.epage=2099&rft.au=PIROG,%20Antoine&PERRIER,%20Romain&RAOUX,%20Matthieu&JAFFREDO,%20Manon&QUOTB,%20Adam&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée