Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorGAUTHIER, Marine
dc.contributor.authorAGNIEL, Denis
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTHIEBAUT, Rodolphe
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorHEJBLUM, Boris
ORCID: 0000-0003-0646-452X
IDREF: 189970316
dc.date.accessioned2021-03-30T15:01:16Z
dc.date.available2021-03-30T15:01:16Z
dc.date.issued2020-11-19
dc.identifier.issn2631-9268en_US
dc.identifier.urioai:crossref.org:10.1093/nargab/lqaa093
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/26840
dc.description.abstractEnAbstract RNA-seq studies are growing in size and popularity. We provide evidence that the most commonly used methods for differential expression analysis (DEA) may yield too many false positive results in some situations. We present dearseq, a new method for DEA that controls the false discovery rate (FDR) without making any assumption about the true distribution of RNA-seq data. We show that dearseq controls the FDR while maintaining strong statistical power compared to the most popular methods. We demonstrate this behavior with mathematical proofs, simulations and a real data set from a study of tuberculosis, where our method produces fewer apparent false positives.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcecrossref
dc.title.endearseq: a variance component score test for RNA-seq differential analysis that effectively controls the false discovery rate
dc.title.alternativeNAR Genom Bioinformen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/nargab/lqaa093en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed33575637en_US
bordeaux.journalNAR Genomics and Bioinformaticsen_US
bordeaux.pagelqaa093en_US
bordeaux.volume2en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue4en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.teamSISTM_BPH
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcedissemin
hal.exportfalse
workflow.import.sourcedissemin
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=NAR%20Genomics%20and%20Bioinformatics&rft.date=2020-11-19&rft.volume=2&rft.issue=4&rft.spage=lqaa093&rft.epage=lqaa093&rft.eissn=2631-9268&rft.issn=2631-9268&rft.au=GAUTHIER,%20Marine&AGNIEL,%20Denis&THIEBAUT,%20Rodolphe&HEJBLUM,%20Boris&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée