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ABSTRACT

RNA-seq studies are growing in size and popularity.
We provide evidence that the most commonly used
methods for differential expression analysis (DEA)
may yield too many false positive results in some sit-
uations. We present dearseq, a new method for DEA
that controls the false discovery rate (FDR) without
making any assumption about the true distribution
of RNA-seq data. We show that dearseq controls
the FDR while maintaining strong statistical power
compared to the most popular methods. We demon-
strate this behavior with mathematical proofs, simu-
lations and a real data set from a study of tuberculo-
sis, where our method produces fewer apparent false
positives.

INTRODUCTION

With the rise of next-generation sequencing technologies
that measure gene expression on the scale of the entire
genome, RNA-seq differential expression analysis (DEA)
has become ubiquitous in many research fields. While nu-
merous approaches have been proposed to perform DEA of
RNA-seq data, there is no clear consensus on which method
is the most efficient. Three methods stand out as the most
commonly used in practice: edgeR (1), DESeq2 (2) and
limma-voom (3) (6999, 6856 and 1004 citations, respec-
tively, in PubMed as of 11 December 2019). edgeR and
DESeq2 both rely on the assumption that gene counts from
RNA-seq measurements follow a negative binomial distri-
bution, and limma-voom is based on a weighted linear
model and assumes resulting test statistics follow a normal
distribution.

Following long-standing statistical practice, researchers
typically attempt to control the probability of finding a gene
to be differentially expressed (DE) when the opposite is true
in reality (i.e. type I error) at a prespecified level (conven-

tionally 5%). In a high-dimensional context such as gene
expression data, the false positive rate or false discovery rate
(FDR) (4) has been largely adopted as the target probabil-
ity to be controlled in exploratory studies. The FDR is the
expected proportion of features identified as significant that
are actually false positives: for instance, an FDR of 5% im-
plies that among all the genes declared DE, 5% are not DE
in reality. Controlling this error rate results in fewer false
positives than controlling the per-gene type I error, while
not being as restrictive as controlling the probability of any
false positive (the family-wise error rate) among all of the
potentially thousands of genes.

This control is usually taken for granted and often left
out from the benchmarks of DEA methods, while in fact
an excessive FDR can be quite problematic. Not control-
ling the FDR means getting more false positives than ex-
pected, which limits the reproducibility of study results.
Whole genome DEAs are usually exploratory steps prior to
subsequent studies to confirm a gene signature is associated
with a particular biological condition. If a majority of the
selected genes turn out to be false positives, results may fail
to replicate and any downstream health benefits may remain
elusive, not to mention the waste of research resources.

When comparing DEA methods, the evaluation of their
empirical FDR with respect to the targeted (nominal) level
is often overlooked (5–10). Nonetheless, some issues with
inflated FDR in DEA have been previously reported in the
literature (11–15), but those warnings have made little ap-
parent impact on DEA practices.

Inflation of the empirical FDR in DEA can have numer-
ous causes, from inadequate preprocessing of the data to
violations of the DEA method’s underlying assumptions.
In particular, edgeR, DESeq2 and limma-voom make
potentially strong distributional assumptions on RNA-seq
data. This type of model-based inference may be required
when RNA-seq studies include only a small number of ob-
servations. However, these methods’ parametric assump-
tions are not typically verifiable in practice. Any devia-
tion from the hypothesized distribution of test statistics
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will translate into ill-behaved P-values and therefore uncon-
trolled FDR. FDR control rests upon the entire distribution
of P-values being uniform under the null hypothesis H0 (i.e.
for genes that are truly not DE).

So even a slight deviation from strict type I error con-
trol can have dramatic consequences on the empirical FDR.
In addition, even if type I error were controlled at say 5%,
nonuniformity in the P-value distribution under the null hy-
pothesis could lead to failure to control the type I error at
lower levels (such as 1% or lower) and/or failure to control
the FDR. Larger sample sizes do not always solve issues
with P-value distributions and FDR control arising from vi-
olation of modeling assumptions, and can sometimes even
exacerbate the problem of misspecification and its conse-
quences. As sequencing costs keep falling and study sample
sizes are increasing, this issue needs to be addressed in large
sample sizes as well.

Here, we propose dearseq, a new method to perform
DEA that effectively controls the FDR, regardless of the
distribution of the underlying data. dearseq is a robust
approach that uses a variance component score test and re-
lies on nonparametric regression to account for the intrinsic
heteroscedasticity of RNA-seq data.

In the ‘Results’ section, we compare the performance of
dearseq to the three most popular state-of-the-art meth-
ods for DEA: edgeR, DESeq2 and limma-voom. We
demonstrate that dearseq enforces strict control of type
I error and FDR while maintaining good statistical power
in a realistic and extensive simulation study where know-
ing the ground truth facilitates benchmarking the proper-
ties of the different methods. We also present a comparative
re-analysis of a real-world tuberculosis (TB) data set from
Singhania et al. (16) studying apparent false positives iden-
tified by the leading DEA methods compared to dearseq.
dearseq can efficiently identify the genes whose expres-
sion is significantly associated with one or several factors of
interest in complex experimental designs (including longi-
tudinal observations) from RNA-seq data while providing
robust control of FDR. dearseq is freely available as an R
package on the Bioconductor library.

MATERIALS AND METHODS

The general objective of DEA is to identify genes whose
expression is significantly associated with a set of clinically
relevant characteristics.dearseq is a new DEA framework
based on a variance component score test (17–19), a flexible
and powerful test that requires few assumptions to guaran-
tee rigorous control of type I and false discovery error rates.
The method can be adapted to various experimental designs
(comparisons of multiple biological conditions, repeated or
longitudinal measurements, integrated supervision by sev-
eral biomarkers at once). It builds upon recent methodolog-
ical developments for the analysis of genomic data (19–21).
Variance component tests offer the speed and simplicity of
classical score tests, but potentially gain statistical power by
using many fewer degrees of freedom and have been shown
to have locally optimal power in some situations (22).

The dearseqmethod comprises three steps (with an op-
tional initial normalization):

1. (optional) normalize gene expression across samples;
2. estimate the mean–variance relationship through a local

linear regression borrowing information across all genes;
3. test each gene;
4. apply a multiple-testing correction controlling the FDR,

such as the Benjamini–Hochberg procedure

Model specification

Let G be the total number of observed genes. Let r g
i be the

raw count of the gth gene for the ith sample (i = 1, . . . ,
n) . Consider now yg

i the normalized gene expression (any
normalization can be used such as log counts per million
(cpm) values; see Supplementary File S1 for more details).
To build a variance component score test statistic, we rely
on the following working linear model for each gene g:

yg
i = α

g
0 + Xiα

g + �iβ
g + ε

g
i , (1)

where ε
g
i ∼ N(0, σ

g
i ), αg

0 is the intercept, Xi is a vector of co-
variates to adjust for and �i contains the variables for DEA,
such as disease status, treatment arm or other clinical char-
acteristics that are to be associated with gene expression.
The parameter of interest is βg: if βg �= 0, then the gene is
DE. The variance of the residuals ε

g
i depends on i to model

the heteroscedasticity inherent to RNA-seq data.
Note that the model presented above is very flexible, and

can be easily extended to grouped (e.g. repeated or longitu-
dinal) data to take into account heterogeneity between indi-
viduals by adding random effects (see Supplementary File
S1 for more details).

Estimation of the mean–variance relationship

Because of their count nature, RNA-seq data are intrinsi-
cally heteroscedastic. We model this mean–variance rela-
tionship through σ

g
i . But obviously, this individual variance

cannot be estimated from a single observation. Instead, we
adopt a strategy similar to voom and we gather information
across all G genes through a local linear regression (23) to
estimate σ̂

g
i in a rigorous and principled manner (see Sup-

plementary File S1 for more details).

Variance component score test statistic estimation

According to the working model (1), a gene is DE and has
its expression associated with the variable(s) of interest in �
if βg �= 0. dearseq thus tests the following null hypothesis
for each gene g:

Hg
0 : βg = 0. (2)

The associated variance component score test statistic can
be written as Qg = qg Tqg, with

qg T = n−1/2
n∑

i=1

(yg
i − μ

g
i )σ g

i
−1

�i , (3)

where μi is the conditional mean expression given the co-
variates Xi (see Supplementary File S1 for more details).
Again, this formula can easily generalize to more complex
experimental designs such as grouped measurements by in-
corporating a random-effects covariance matrix (see Sup-
plementary File S1 for more details).
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Because this is a score test, we only need to estimate Q̂g

under the null hypothesis of no differential expression. We
estimate μ̂i through ordinary least squares. Finally, since
there are a total of G tests (with G often >10 000), it is ab-
solutely necessary to correct for multiple-testing correction,
for instance, by using the Benjamini–Hochberg procedure.

Asymptotic and permutation tests

The asymptotic distribution of the test statistic Q can be
shown to be a mixture of χ2

1 random variables:

Q →
ni∑

l=1

alχ
2
1 , (4)

where the mixing coefficients al depend on the covariance of
q (see Supplementary File S1 for details). This asymptotic
result rests solely upon the central limit theorem, and this
is why dearseq is particularly robust to misspecification:
the distribution of Q is the same whether model (1) holds or
not. Therefore, the type I error and the FDR are controlled
as long as the central limit theorem is in action (meaning n
is large enough).

One advantage of using a variance component score test
over a regular score test is the gain in statistical power that
comes from exploiting the correlation among βg coefficients
to potentially reduce the degrees of freedom of the test. An-
other advantage is its flexibility that can accommodate ran-
dom effects in the model to test mixed hypotheses (see Sup-
plementary File S1 for details).

To overcome the shortcomings of this asymptotic test in
small samples, we propose to use a permutation test using
the same statistic Q. Since we are in a multiple-testing set-
ting, it is of the utmost importance to carefully compute
the associated P-values (24) before applying the Benjamini–
Hochberg correction. Finally, in order to preserve statistical
power, we use Phipson and Smyth’s correction to account
for random permutations (see Supplementary File S1).

Availability of data and materials

dearseq is freely available on Bioconductor at
https://bioconductor.org/packages/release/bioc/html/
dearseq.html. The sequence data set from the Singhania
et al. TB study analyzed in this article is accessible from
the NCBI GEO database with the primary accession
code GSE107991. The code used to analyze the data set
and the results are available from the GitHub repository
(https://github.com/borishejblum/dearseq).

Software versions

All computations were run under R v3.6.1 using DESeq2
package v1.25.11, edgeR package v3.27.13, limma pack-
age v3.41.16 and dearseq package v0.99.8.

RESULTS

Synthetic simulation study

As highlighted by both Conesa et al. (25) and Assefa et al.
(15), engaging in realistic yet clear simulations of gene ex-

pression is difficult. One has to find the right balance be-
tween the controlled settings necessary to know the ground
truth and the realism necessary to be convincing that the re-
sults would translate in real-world analyses. In an attempt
to cover as broad a spectrum as possible, we present a
performance evaluation of our methods under four data-
generating scenarios: (i) a negative binomial parametric as-
sumption for RNA-seq data; (ii) a highly nonlinear model
designed to violate most modeling assumptions; (iii) a re-
sampling from SEQC data (26) with truncated Gaussian
noise; and (iv) a data-driven negative binomial parametric
assumption. Simulations (i) and (ii) were designed to drasti-
cally depart from the models used for all methods, whereas
simulations (iii) and (iv) aim to be more realistic. Scenario
(i) may be more favorable to edgeR and DESeq2 as it re-
lies on their parametric assumption of a negative binomial
distribution for RNA-seq count data. Scenario (ii) may be
unfavorable for all three compared methods (edgeR, DE-
Seq2 and limma-voom) since it features a high degree
of nonlinearity, deviating from any assumed model. Sce-
nario (iii) is likely the most realistic of the three because it
relies only on resampling real RNA-seq samples from the
SEQC study (26), similarly to what was done by Germain
et al. (13). A multivariate truncated Gaussian noise (us-
ing the estimated covariance structure across the observed
genes) was added to enable the generation of larger sam-
ple sizes while preserving the count nature of the data. Sce-
nario (iv) relies on a negative binomial distribution whose
parameters are estimated using data from Singhania et al.
(16) in order to avoid using arbitrary settings. Like scenario
(i), it favors both edgeR and DESeq2 as they both rely
on the negative binomial distribution assumption for the
counts.

We simulated 1000 synthetic data sets at different sam-
ple sizes using each one of these four scenarios. For sce-
narios (i) and (ii), 0.5% of genes were generated as truly
DE, while the remaining 99.5% were not DE, among 10 000
genes. For scenario (iii), since it is based on resampling from
homogeneous samples, it was impossible to induce truly
DE genes without making further parametric assumptions
(which would have made the scenario less realistic). For this
reason, in scenario (iii), FDR corresponded to the proba-
bility of finding any genes to be DE. In scenario (iv), 5% of
the genes were generated as truly DE, while the remaining
95% were not DE, among 10 000 genes. Details of the data-
generating mechanisms are provided in Supplementary File
S1.

We evaluated the four methods (the leading methods and
dearseq) in terms of type I error control and statistical
power, as well as in terms of FDR and true discovery rate
(TDR) after Benjamini–Hochberg (4) correction for mul-
tiple testing. Throughout, we used a targeted control rate
for the FDR at a nominal level of 5%. Figure 1 presents
the Monte Carlo estimation over the 1000 simulations in
each of the four scenarios for both the type I error and the
FDR according to increasing sample sizes (from 4 to 200
samples). Figure 2 presents the results of the first two sce-
narios and the data-driven negative binomial one for both
the statistical power and the TDR. For all edgeR, DE-
Seq2 and limma-voom analyses, we used the default val-
ues and followed the guidelines from their respective online
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Figure 1. Type I error and FDR curves for each DEA method with increasing sample sizes. In each setting (negative binomial, nonlinear, SEQC data
resampling and data-driven negative binomial), the type I error is computed as the number of significant genes among the true negative, and the FDR as
the average number of false positives among the genes declared DE.
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Figure 2. Power and TDR curves for each DEA method with increasing sample sizes. Because SEQC data resampling only generates nonsignificant genes,
this setting does not allow to estimate statistical power or TDR.
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user guides. The code executed for all four methods is pro-
vided in Supplementary File S2.

In Figure 1, dearseq exhibited good control of both
type I error and FDR in all four scenarios, as soon as
asymptotic convergence was reached (between 16 and 50
samples depending on the scenarios). To accommodate
small sample sizes, we have also developed a permutation-
based version of dearseq, which always controlled type I
error and FDR, regardless of the sample size. edgeR ap-
peared to control the type I error in scenarios (i), (iii) and
(iv) onward, but exhibits slightly inflated type I error for
large sample sizes in scenario (i) (from 100 samples). This
was much more visible for the FDR, which edgeR failed to
control as soon as the sample size rose above 50. In the non-
linear model (ii), neither the type I error nor the FDR is con-
trolled by edgeR. limma-voom exhibited good control of
both the type I error and FDR as long as its linear hypoth-
esis was not violated [i.e. not scenario (ii)] and the sample
size was large enough (between 8 and 50 samples depend-
ing on the scenario). Finally, DESeq2 failed to control ei-
ther the type I error or the FDR in scenarios (i), (ii) and (iii),
with its problems worsening as the sample size increased. In
scenario (iv), DESeq2, limma-voom and edgeR exhibited
a high FDR at small sample sizes, while the permutation-
based version of dearseq controlled the FDR for both
small and large sample sizes.

Figure 2 shows that this robust control of type I error
and FDR from dearseq does not come at a price of re-
duced statistical power (or TDR, its multiple-testing correc-
tion equivalent). Interestingly, the permutation approach
also exhibits good statistical power (regarding competing
approaches, interpreting statistical power when the type I
error is not controlled would be dubious).

Real data set

In a recent paper, Singhania et al. identified a 373-gene sig-
nature of active TB from RNA-seq data (16). TB is a dis-
ease caused by a bacterium called Mycobacterium tubercu-
losis. Bacteria typically infect the lungs, but they can also
affect other parts of the body. TB can remain in a quies-
cent state called latent TB infection (LTBI), where the pa-
tient is infected but has no clinical, bacteriological or ra-
diological signs of the disease. Participants to this study
were recruited from several medical institutes in London,
UK [see (27) for a detailed description]. All participants
were aged over 18 years. Active TB patients were confirmed
by laboratory isolation of M. tuberculosis on mycobacte-
rial culture of a respiratory specimen, while latent TB pa-
tients were characterized by a positive tuberculin-skin test
(TST) together with a positive result using an M. tubercu-
losis antigen-specific IFN-� release assay (IGRA). Healthy
control participants were recruited from volunteers at the
National Institute for Medical Research (Mill Hill, London,
UK) and were negative to both TST and IGRA. In total, 54
participants were included, of whom 21 were active TB pa-
tients, 21 were LTBI patients and 12 were healthy controls.

The signature was derived by contrasting active TB pa-
tients on the one hand against healthy individuals (Control)
or those with a latent infection (LTBI) on the other hand
(see Figure 3). Their original analysis applied edgeR to

Figure 3. Venn diagram showing overlap of DE genes using dearseq and
the original edgeR signature among the three comparisons performed. (A)
Venn diagram showing the results of the three DEA using dearseq. Note
that no DE gene was found with our method comparing the LTBI group
and the control group, unlike edgeR that found two such genes to be DE.
(B) Venn diagram showing the results of the DEA using edgeR (Singhania
et al.).

their Berry London RNA-seq data, which included 14 150
normalized gene counts measured across 54 samples after
preprocessing (see Singhania et al. or Supplementary File
S1 for more information on this preprocessing) available
from GEO (GSE107991). In light of our simulation results,
we sought to explore whether the signature Singhania et al.
found using edgeR was likely to contain false positives. We
therefore conducted a comparative re-analysis of these data,
first comparing DE genes found by dearseq to the orig-
inal signature of Singhania et al. Second, we further com-
pared the results obtained from the other leading methods,
DESeq2 and limma-voom.

Following Singhania et al., to be included in the signature
a DE gene g must have had both (i) an absolute log2(fold
change) > 1 and (ii) an FDR adjusted P-value <0.05
(after correction for multiple testing with the Benjamini–
Hochberg procedure). To ensure reproducibility of the nu-
merical values from Singhania et al., the log2 fold changes
were calculated using edgeR. The signature was then eval-
uated by its capacity to distinguish between active TB ver-
sus all others. In order to quantify the relevance of each se-
lected gene for distinguishing active TB from control and
LTBI, we computed two measures of association, the leave-
one-out cross-validated Brier score (28) and the marginal
P-value for the association between the gene and TB status.
The Brier score was computed as BSg = (1/n)

∑n
i=1(π̂TB

gi −
1i∈TB)2. It compares each patient’s TB status to π̂TB

gi , their
predicted probability of TB based on the selected gene g es-
timated using leave-one-out cross-validation. A gene with
Brier score BSg close to 0 is a good predictor of TB, while a
gene with Brier score far away from 0 is a poor predictor and
potential false positive. Similarly, we compute the marginal
P-value for each gene from a logistic regression predicting
TB status from the gene expression. We estimate the Brier
score and P-value for each gene separately. We do this rather
than a multivariate model including all genes because the
presence of a single predictive gene in the multivariate sig-
nature would be enough to yield accurate predictions, thus
masking the potential false positive genes included in the
model.
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Figure 4. Comparing edgeR-based signature to the signature derived by
dearseq. (A) Boxplots of the Brier scores of the 41 genes private to
dearseq (i.e. not also declared DE by edger) and the 142 genes private
to the original edgeR analysis. (B) Univariate Brier scores. The blue points
correspond to genes found only in the original edgeR signature, the yellow
points correspond to genes found only in the dearseq signature and the
gray points correspond to genes found in both signatures. (C) Marginal P-
values from a univariate logistic regression combined with a leave-one-out
cross-validation for the 40 dearseq-private and the 142 edgeR-private
genes. The red line indicates the common 5% P-value threshold.

Applying the dearseq permutation test (see the ‘Mate-
rials and Methods’ section) to the three comparisons orig-
inally performed in Singhania et al. (TB versus Control,
LTBI versus Control and TB versus LTBI) yields a global
signature of 272 DE genes (see Figure 3) of which 231
are in common with those found by the original edgeR
analysis (see Figure 5). We isolated the genes only identi-
fied by dearseq from the genes only identified by edgeR
and from the genes in common between the two signa-
tures to further assess the differences between the two re-
sults. Comparing the gene-specific Brier scores BSg be-
tween the two signatures clearly shows that the overwhelm-
ing majority of the highest scores (i.e. the lowest predic-
tive abilities) are due to edgeR-private genes (see Figure
4B). Indeed, the univariate Brier scores of the dearseq-
private genes have significantly smaller values on average
than the edgeR-private genes (according to a t-test; see Fig-
ure 4). This is further confirmed by the marginal associa-
tion P-values, for which all of the highest values are again

Figure 5. Venn diagram summarizing the different signatures from the four
methods. Venn diagram of the genes declared DE by dearseq, DESeq2,
limma-voom and edgeR (Singhania et al.) under an FDR-adjusted P-
value of 0.05. None of the genes is found with dearseq only.

from edgeR-private genes, notably all the values above
0.05. Thus, edgeR-private genes are likely false positives,
whereas the dearseq-private genes sound more relevant.
From a biological point of view, the main pathways con-
cerned by the 142 edgeR-private genes, which are ‘Inhibi-
tion of matrix metalloproteinases’, ‘Granulocyte adhesion
and diapedesis’ and ‘Inhibition of angiogenesis by TSP1’
using ingenuity pathway analysis, were not directly related
to the main pathways observed in the retained 373-gene
signature (IFN-inducible genes, B- and T-cell genes) al-
though the interferon signaling pathway was represented by
two genes and some upstream regulators. On the contrary,
among the 41 dearseq-private genes, HERC5 is upregu-
lated by regulators belonging to IFN signaling pathways
including IFN�� and IFN� (known to be regulated by M.
tuberculosis). Those results emphasize the better predictive
ability of the genes identified by dearseq and highlight the
potential false positives arising from edgeR.

In addition, we performed the same analysis using
limma-voom and DESeq2 to further benchmark the per-
formance of dearseq. For DESeq2 and limma-voom,
we used the default values following the guidelines from
their respective online user guides. For edgeR, we rely on
the results directly provided by Singhania et al. (16) (see
Supplementary File S1 for details and verbatim code in
Supplementary File S2). Figure 5 displays the Venn dia-
gram of significantly DE genes across these four analy-
ses. There are 228 genes common across all these tools.
Interestingly, all of the 272 genes identified by dearseq
are also identified by at least one of the three competing
methods (and only 2 genes are identified by less than two
other methods––namely only by DESeq2), illustrating that
dearseq is less prone to generate false positives. DESeq2
identifies the largest signature comprising 471 genes, includ-
ing all of the 272 genes identified by dearseq and 360 out
of the 373 originally identified by edgeR, while limma-
voom identifies 402 genes, among which 267 are in com-
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Figure 6. Boxplots of the Brier scores of all the genes declared DE by the
four methods. Boxplots of the Brier scores of all the DE genes called by
dearseq, DESeq2, limma-voom and edgeR (Singhania et al.). The pre-
dictions are derived from a logistic regression combined with a leave-one-
out cross-validation. Smaller Brier scores are better.

mon with dearseq and 314 are in common with edgeR.
As can be seen in Figure 6, the dearseq signature has the
lowest average Brier score, meaning that most of the addi-
tional genes identified by the three competing methods are
less predictive of active TB status. Figure 7 strengthens this
conclusion by showing again that the limma-voom-private
genes are largely over-represented among the highest Brier
scores and the highest marginal P-values. The same conclu-
sion can be drawn for the DESeq2-private genes.

DISCUSSION

The proposed method dearseq represents an innovative
and flexible approach for performing gene-wise analysis of
RNA-seq gene expression measurements with complex de-
sign. As demonstrated in our simulation study, edgeR, DE-
Seq2 or limma-voom can all fail to control the type I
error and the FDR when the sample size increases, while
our method behaves correctly. Moreover, the re-analysis of
the London Berry TB data set revealed that the DE genes
identified by dearseq are highly predictive of active TB
status, while results from the three state-of-the-art meth-
ods (including the original edgeR analysis) likely include
numerous false positives. While Agniel et al. (19) focused
on the analysis of longitudinal data and only considered
gene set analysis, here we introduce a much broader frame-
work that generalizes the previous mathematical results be-
yond longitudinal studies and gene set analysis––most no-
tably dearseq allows gene-by-gene analysis and can ac-
commodate many different experimental designs including
the usual two (or more) group(s) comparison.

It is important to note that edgeR, DESeq2 or limma-
voom will not systematically have inflated FDR. As illus-
trated by our simulation studies, there are some scenarios in
which, for some given sample sizes, they control the FDR
adequately. However, we have shown here that this is no

guarantee, and in practice it is very difficult to know under
which circumstances a data analysis is taking place.

Because dearseq solely relies on the central limit
theorem convergence for its asymptotic test to work, it
guarantees a control of the FDR without needing any
model to hold as long as the sample size is large enough.
This contrasts with limma-voom that hinges on weighted
least squares and can yield incorrect inference if the het-
eroskedasticity in the variances is not modeled correctly
(29). For lower sample sizes, where convergence is not
reached, a robust permutation test can be used instead. Us-
ing Phipson and Smyth’s (24) correction, it adequately con-
trols the FDR regardless of the sample size and exhibits
good statistical power in our simulation study. An alter-
native approach to permutation tests would be to use a
Bayesian estimate of the posterior P-value with either a
uniform prior or a Jeffreys’ prior, for instance. Consider-
ing m the number of permutations and b the number of
successes, the P-value is then equal to (b + 1)/(m + 2) or
(b + 1/2)/(m + 1), which is also never equal to 0. Notice
when m is large, this ends up very close to the unbiased es-
timator from Phipson et al. Besides, this permutation test
introduces a trade-off between the numerical precision (i.e.
the number of permutations performed) and the associated
computational time. We have undertaken substantial efforts
to speed up the implementation of the dearseqR package
on Bioconductor, which allows for parallel computing. This
leads to reasonable computation times (from a few seconds
to no more than a couple of minutes on a laptop) depend-
ing on the sample size and the computing power available.
If more permutations were deemed essential, one option
would be to selectively increase the number of permutations
only for the genes where numerical precision is not sufficient
to confidently estimate their adjusted P-value, thus limiting
the computational burden.

Among the three state-of-the-art methods compared
here, DESeq2 seems to fail to control the FDR most often.
In particular, even under its model assumption of a nega-
tive binomial distribution for the data, it can suffer from
inflated FDR. This seems counterintuitive as our synthetic
data were generated under the negative binomial distribu-
tion, and this should benefitDESeq2 and edgeR----since
both methods assume this model. As has been noted previ-
ously, this behavior can be caused by nonuniformity in the
distribution of the P-values arising from DESeq2 or edgeR
(especially when combined with a multiple-testing correc-
tion such as the Benjamini–Hochberg procedure) (12,30–
32). In addition, it should be noted that this behavior is not
expected to be universal and other parameterizations of the
negative binomial generative model could lead to better per-
formance for these methods.

DEA can have numerous preprocessing steps, and the
various possibilities can complicate the fair comparison
of different methods. Since here our primary goal was
to compare to the original edgeR analysis, we used the
edgeR preprocessed data as input to dearseq (dearseq
does not rely on a specific preprocessing step and only re-
quires that gene expression measurements are comparable
across samples––all preprocessing regarding systematic bias
or batch effect must be performed beforehand with any
procedure deemed appropriate). For DESeq2 and limma-
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Figure 7. Comparison of the dearseq-derived signature with both the DESeq2- and limma-voom-derived signatures. (A) Boxplots of the Brier scores
of the DE genes private to limma-voom and the DE genes common to both dearseq and limma-voom. Note that only five genes are identified only by
dearseq and not limma-voom. Therefore, we exclude the associated boxplot. (B) Univariate Brier scores. The purple points correspond to the DE genes
called by limma-voom and the gray points correspond to the genes common with dearseq. (C) Marginal P-values. (D) Boxplots of the Brier scores of
the DE genes private to dearseq and the DE genes common to both dearseq and DESeq2. All genes declared DE by dearseq were also declared
DE by DESeq2. (E) Univariate Brier scores. The green points correspond to the DE genes called by DESeq2 and the gray points correspond to the genes
common with dearseq. All genes declared DE by dearseq were also declared DE by DESeq2. (F) Marginal P-values.
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voom, we used the raw counts. Indeed, both edgeR and
DESeq2 assume the input data to be strictly counts (i.e.
integers), due to their negative binomial distribution as-
sumption, though edgeR also has some support for so-
called non-integer counts. While this seems sensible given
the nature of RNA-seq data, recent innovations in RNA-
seq alignment methods such as salmon (33) or kallisto
(34) return pseudo-counts that are not integers. If the loss
of precision is likely not severe when rounding up pseudo-
counts, this same limitation prevents the use of already pre-
processed (i.e. normalized or transformed) data and forces
the DEA practitioner to stick to the specific processing of
the methods. In that regard, dearseq is extremely flexible
and offers to use either raw or transformed data (the de-
fault applies a log-cpm transformation similarly to limma-
voom). RNA-seq is subject to various technical biases, and
in particular the library size has an important and well-
known impact on downstream analysis if ignored. There-
fore, it is important to account for library size one way
or another, and several RNA-seq data normalizations have
been proposed to do so [e.g. TMM, RPKM, FPKM and
CPM (35)]. The choice of which normalization to use is
often linked to the biological context of an analysis, and
thanks to its distribution-free assumptions, dearseq can
be paired with any normalization method that is deemed
appropriate. Following Law et al. (3), we implemented the
log2 cpm by default.

In addition, these methods have been designed to com-
pare two (or multiple) conditions (several treatment regi-
mens), and are not specifically oriented toward grouped or
longitudinal data. Therefore, there is a need in the broader
DEA community for a more flexible method. dearseq re-
lies on a general methodology that can easily accommodate
more complex designs including gene set analysis while cor-
rectly controlling the FDR (19).

We have demonstrated that the three most popular RNA-
seq DEA methods may not guarantee control of the num-
ber of false positive in their results, even when the sample
size increases. To exemplify this problematic behavior, we
present extensive simulation studies ranging from realistic
resampling of real data to synthetic data generation un-
der the models’ assumptions, as well as a re-analysis of a
real-world data set. To offer an alternative solution to DEA
practitioners, we have developed dearseq, a new DEA
method that uses a variance component score test to provide
a robust, powerful and versatile approach to DEA while
avoiding the pitfall of FDR inflation exhibited by the cur-
rent state-of-the-art methods in certain situations. We also
benchmarked this new method alongside the three estab-
lished methods on both the simulations and the real data
analysis to illustrate its excellent performance, in terms of
both FDR control and statistical power.

These results have important implications for the field,
as DEA of RNA-seq data has become widespread. The
distributional assumptions and model-based inference in-
herent to DESeq2, edgeR and limma-voom can under-
estimate the number of false positives in realistic settings.
Users should be aware of the possibility of inflated FDR
when using these procedures and should consider the use
of dearseq that gives theoretical and empirical control of
the FDR without sacrificing its statistical power. Given the

results of both our simulations and our real-world data re-
analysis, we thus formulate the following recommendations:
(i) do not rely on a single DEA method and compare the
results across several tools, as this strategy may likely elim-
inate the majority of false positives; and (ii) for your main
analysis, we recommend using dearseq or limma-voom
over DESeq2 or edgeR. Indeed, limma-voom appears to
control the FDR adequately as long as your sample size
is large enough and the model assumptions (in particular,
the linearity) are reasonable. On the other hand, dearseq
ensures an effective control of the FDR regardless of the
sample size (thanks to its permutation test for small sample
sizes) and demonstrates good statistical power.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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