dc.contributor.advisor | Chevalier, Bernard | |
dc.contributor.advisor | Gorsse, Stéphane | |
dc.contributor.author | MAYER, Charlotte | |
dc.contributor.other | Chevalier, Bernard | |
dc.contributor.other | Gorsse, Stéphane | |
dc.contributor.other | Delmas, Claude | |
dc.contributor.other | Champion, Yannick | |
dc.contributor.other | Lejay, Pascal | |
dc.contributor.other | Franco, Victorino | |
dc.date | 2011-09-29 | |
dc.date.accessioned | 2020-12-14T21:17:16Z | |
dc.date.available | 2020-12-14T21:17:16Z | |
dc.identifier.uri | http://ori-oai.u-bordeaux1.fr/pdf/2011/MAYER_CHARLOTTE_2011.pdf | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/22754 | |
dc.identifier.nnt | 2011BOR14303 | |
dc.description.abstract | Les travaux présentés dans ce manuscrit portent sur la synthèse et la caractérisation de nouveaux matériaux magnétocaloriques à basse de terres rares pour la réfrigération magnétique. Le premier chapitre constitue une introduction aux notions d’effet magnétocalorique et de réfrigération magnétique et dresse un état de l’art des matériaux magnétocaloriques existants. Dans le but d’obtenir des matériaux à forte capacité de réfrigération (RC) et d’identifier des stratégies d’amélioration de ce critère de performance, deux voies de recherche ont été explorées : l’élargissement de la transition magnétique et l’effet de l’élément de transition M et de l’élément p (X) dans les verres métalliques Gd60M30X10 (M = Mn, Fe, Co, Ni, Cu et X = Al, Ga, In) d’une part, et la synthèse de nouveaux siliciures ternaires dans les systèmes R-M-Si (R = Nd, Gd, Tb et M = Co, Ni) à fort potentiel magnétocalorique, d’autre part.Le second chapitre de cette thèse présente les propriétés magnétiques des rubans amorphes à base de gadolinium synthétisés par la technique de melt-spinning, dans lesquels le désordre structural induit un très fort élargissement de la transition magnétique (vis-à-vis de celle du gadolinium par exemple). Il montre dans un premier temps, la faible influence de l’élément p (X) sur les propriétés magnétiques des rubans Gd60Mn30X10 (X = Al, Ga, In). Une seconde partie présente la très forte influence de l’élément de transition M, tant sur la nature de la transition magnétique que sur les propriétés magnétocaloriques des verres métalliques Gd60M30In10 (M = Mn, Fe, Co, Ni, Cu), avec en particulier une température de Curie variant entre 86 (M = Ni) et 220 K (M = Fe) et l’existence d’un phénomène de type cluster-glass en dessous de 35 K lorsque M = Mn. Le chapitre trois de cette thèse se décline en trois parties. La première décrit les conditions de synthèse parfois délicates, notamment dans le choix des températures de recuit, des siliciures R5MSi2, Gd5Si3 et du composé à domaine d’existence Gd3Co2,5 ± xSi1,5 ± y. L’utilisation de la méthode Rietveld pour l’affinement des diffractogrammes de rayons X sur poudre et monocristaux et neutrons a permis de montrer que les composés R5MSi2 adoptent une structure de type Cr5B3 avec la particularité de l’occupation mixte du site 8h par Co et Si à 50 %/50 % et que Gd3Co2,5 ± xSi1,5 ± y adopte une structure de type Er3Ge4 avec des sites mixtes Co/Si en positions 4a et 4c. La seconde partie présente les propriétés magnétiques et magnétocaloriques du siliciure Gd5CoSi2. Ce composé subit une transition ferromagnétique à la température de Curie de 169 K qui s’accompagne d’une variation d’entropie magnétique calculée par l’application de la relation de Maxwell, de -4,7 et 8,7 J kg-1 K-1 pour des variations de champ magnétique respectives de 2 et 5 T. Le troisième volet de ce chapitre décrit les propriétés magnétiques de Nd5CoSi2 et Nd5NiSi2 qui présentent une transition ferromagnétique respectivement à 55 et 44 K. Il décrit également l’affinement de la structure ferromagnétique cantée de Nd5CoSi2 obtenue par des mesures de diffraction neutronique.Il ressort de ces travaux que l’évaluation des matériaux magnétocaloriques par le seul critère de capacité de réfrigération ne mène pas vers les matériaux les plus adaptés à l’application. Il faudrait cibler plus spécifiquement, pour chaque type de cycle de réfrigération envisagé, des critères pragmatiques tels qu’une fenêtre de température d’utilisation autour de la température de Curie ou une valeur de chaleur spécifique optimale afin de mieux guider la recherche de nouveaux matériaux magnétocaloriques. | |
dc.description.abstractEn | The studies presented in this manuscript deal with the synthesis and characterization of new rare-earth based magnetocaloric materials for magnetic refrigeration applications. The first chapter is an introduction to the concepts of magnetocaloric effect and magnetic refrigeration and establishes a review of the magnetocaloric materials existing today. Two research axes were explored in order to obtain materials with a high refrigeration capacity (RC) and to identify strategies for improving this performance criterion: the enlargement of magnetic transition and the effect of transition element M and p-element X in the metallic glasses Gd60M30X10 (M = Mn, Fe, Co, Ni, Cu et X = Al, Ga, In) on one hand, and the synthesis of new ternary silicides in the RE-M-Si systems (RE = Nd, Gd, Tb et M = Co, Ni) with high magnetocaloric potential on the other hand. The second chapter of this thesis presents the magnetic properties of Gd-based amorphous ribbons synthesized by the melt-spinning technique, in which the structural disorder induces a very strong enlargement of the magnetic transition (compared to that of pure Gd for instance). In a first part, it shows the weak influence of the p element (X) on the magnetic properties of Gd60Mn30X10 (X = Al, Ga, In) ribbons. A second part presents the very strong influence of the transition element M, either on the nature of the magnetic transition and on the magnetocaloric properties of Gd60M30In10 (M = Mn, Fe, Co, Ni, Cu) metallic glasses with, in particular, a Curie temperature varying between 86 (M = Ni) and 220 K (M = Fe) and the occurrence of a cluster-glass behavior below 35 K when M = Mn. The third chapter of this thesis is composed of three parts. The first one describes the synthesis conditions of RE5MSi2 (RE = Nd, Gd, Tb), Gd5Si3 and of the compound with existence domain Gd3Co2.5 ± xSi1.5 ± y. These syntheses are sometimes delicate, particularly in the choice of annealing temperatures. The use of the Rietveld method to refine the X-ray and neutron powder diffraction patterns allowed showing that RE5MSi2 compounds adopt a Cr5B3 type structure, with a mixed occupation of 8h site by Co and Si at 50 %/50 % and that Gd3Co2.5 ± xSi1.5 ± y adopts an Er4Ge4 type structure with mixed Co/Si occupation in 4a et 4c positions. The second part presents the magnetic and magnetocaloric properties of the Gd5CoSi2 silicide. This compound exhibits a ferromagnetic transition at the Curie temperature TC = 169 K that is accompanied by a magnetic entropy change of -4.7 and 8.7 kg-1 K-1 at 2 and 5 T, respectively, as calculated by the application of Maxwell’s relationship. The third part is this chapter describes the magnetic properties of Nd5CoSi2 and Nd5NiSi2 which order ferromagnetically at 55 and 44 K, respectively. It also presents the refinement of the canted ferromagnetic structure on Nd5CoSi2, obtained by neutron diffraction measurements.These study show that evaluating the magnetocaloric materials by only considering the criterion of refrigeration capacity does not lead to the elaboration of the best materials for the applications. It could be more efficient to target more pragmatic criteria, for each considered refrigeration cycle, such as a temperature window of use around the Curie temperature or an optimal specific heat value in order to lead the research of new magnetocaloric materials at best. | |
dc.language.iso | fr | |
dc.subject | Effet magnétocalorique | |
dc.subject | Transition magnétique du second ordre | |
dc.subject | Verres métalliques | |
dc.subject | Amorphisation | |
dc.subject | Effet cluster glass | |
dc.subject | Intermétalliques | |
dc.subject | Diffraction X et neutrons sur poudre | |
dc.subject | Structures cristallographique et magnétique | |
dc.subject | Terres rares | |
dc.subject.en | Magnetocaloric effect | |
dc.subject.en | Second order magnetic transition | |
dc.subject.en | Metallic glasses | |
dc.subject.en | Amorphization | |
dc.subject.en | Cluster glass effect | |
dc.subject.en | Intermetallics | |
dc.subject.en | X-ray and neutron powder diffraction | |
dc.subject.en | Crystallographic and magnetic structure | |
dc.subject.en | Rare earths | |
dc.title | Nouveaux matériaux magnétocaloriques à base de terres rares pour la réfrigération magnétique | |
dc.title.en | New rare earth-based magnetocaloric materials for magnetic refrigeration | |
dc.type | Thèses de doctorat | |
dc.contributor.jurypresident | Delmas, Claude | |
bordeaux.hal.laboratories | Thèses de l'Université de Bordeaux avant 2014 | * |
bordeaux.hal.laboratories | Institut de chimie de la matière condensée de Bordeaux (Pessac) | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.type.institution | Bordeaux 1 | |
bordeaux.thesis.discipline | Physico-Chimie de la Matière Condensée | |
bordeaux.ecole.doctorale | École doctorale des sciences chimiques (Talence, Gironde) | |
star.origin.link | https://www.theses.fr/2011BOR14303 | |
dc.contributor.rapporteur | Champion, Yannick | |
dc.contributor.rapporteur | Lejay, Pascal | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Nouveaux%20mat%C3%A9riaux%20magn%C3%A9tocaloriques%20%C3%A0%20base%20de%20terres%20rares%20pour%20la%20r%C3%A9frig%C3%A9ration%20magn%C3%A9tique&rft.atitle=Nouveaux%20mat%C3%A9riaux%20magn%C3%A9tocaloriques%20%C3%A0%20base%20de%20terres%20rares%20pour%20la%20r%C3%A9frig%C3%A9ration%20magn%C3%A9tique&rft.au=MAYER,%20Charlotte&rft.genre=unknown | |