Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorGANSER, Iris
dc.contributor.authorPAIREAU, Juliette
dc.contributor.authorBUCKERIDGE, David L
dc.contributor.authorCAUCHEMEZ, Simon
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTHIEBAUT, Rodolphe
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorPRAGUE, Melanie
dc.date.accessioned2025-05-19T12:54:51Z
dc.date.available2025-05-19T12:54:51Z
dc.date.issued2025-04-28
dc.identifier.issn1476-6256en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/206653
dc.description.abstractEnNumerous studies assessing the effectiveness of non-pharmaceutical interventions (NPIs) against COVID-19 have produced conflicting results, partly due to methodological differences. This study aims to clarify these discrepancies by comparing two frequently used approaches in terms of parameter bias and confidence interval coverage of NPI effectiveness parameters. We compared two-step approaches, where NPI effects are regressed on by-products of a first analysis, such as the effective reproduction number ${\mathcal{R}}_t$, with more integrated models that jointly estimate NPI effects and transmission rates in a single-step approach. We simulated datasets with mechanistic and an agent-based models and analyzed them with both mechanistic models and a two-step regression procedure. In the latter, ${\mathcal{R}}_t$ was estimated first and then used as the outcome in a linear regression with NPI variables as predictors. Mechanistic models consistently outperformed two-step regressions, exhibiting minimal bias (0-5%) and accurate confidence interval coverage. Conversely, the two-step regression showed bias up to 25%, with significantly lower-than-nominal confidence interval coverage, reflecting challenges in uncertainty propagation. We identified additional challenges in the two-step regression method, such high depletion of susceptibles and time lags in observational data. Our findings suggest caution when using two-step regression methods for estimating NPI effectiveness.
dc.description.sponsorshipUniversity of Bordeaux Graduate School in Digital Public Health - ANR-17-EURE-0019en_US
dc.description.sponsorshipInitiative for the creation of a Vaccine Research Institute - ANR-10-LABX-0077en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subject.enDynamical Models
dc.subject.enNon-Linear Mixed Effects Models
dc.subject.enNon-Pharmaceutical Interventions
dc.subject.enReproductive Number
dc.subject.enSimulations
dc.title.enComparative evaluation of methodologies for estimating the effectiveness of non-pharmaceutical interventions in the context of COVID-19: a simulation study
dc.title.alternativeAm J Epidemiolen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1093/aje/kwaf035en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed40302107en_US
bordeaux.journalAmerican Journal of Epidemiologyen_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionINRIAen_US
bordeaux.teamSISTM_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDAgence Nationale de Recherches sur le Sida et les Hépatites Viralesen_US
bordeaux.identifier.funderIDConseil Régional Aquitaineen_US
hal.identifierhal-05073613
hal.version1
hal.date.transferred2025-05-19T12:54:54Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=American%20Journal%20of%20Epidemiology&rft.date=2025-04-28&rft.eissn=1476-6256&rft.issn=1476-6256&rft.au=GANSER,%20Iris&PAIREAU,%20Juliette&BUCKERIDGE,%20David%20L&CAUCHEMEZ,%20Simon&THIEBAUT,%20Rodolphe&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record