Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierObservation de l’environnement par imagerie complexe [OBELIX]
dc.contributor.authorPANDE, Shivam
hal.structure.identifierObservation de l’environnement par imagerie complexe [OBELIX]
dc.contributor.authorUZUN, Baki
hal.structure.identifierDepartment of Computer Science [Aalto]
dc.contributor.authorGUIOTTE, Florent
hal.structure.identifierObservation de l’environnement par imagerie complexe [OBELIX]
dc.contributor.authorPHAM, Minh-Tan
hal.structure.identifierLittoral, Environnement, Télédétection, Géomatique [LETG - Rennes ]
dc.contributor.authorCORPETTI, Thomas
hal.structure.identifierEnvironnements et Paléoenvironnements OCéaniques [EPOC]
dc.contributor.authorDELERUE, Florian
IDREF: 17229567X
hal.structure.identifierObservation de l’environnement par imagerie complexe [OBELIX]
dc.contributor.authorLEFÈVRE, Sébastien
dc.date.accessioned2025-04-02T07:37:09Z
dc.date.available2025-04-02T07:37:09Z
dc.date.issued2024
dc.date.conference2024-07-07
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/205891
dc.description.abstractEnIn this study, we tackle the challenge of identifying plant species from ultra high resolution (UHR) remote sensing images. Our approach involves introducing an RGB remote sensing dataset, characterized by millimeter-level spatial resolution, meticulously curated through several field expeditions across a mountainous region in France covering various landscapes. The task of plant species identification is framed as a semantic segmentation problem for its practical and efficient implementation across vast geographical areas. However, when dealing with segmentation masks, we confront instances where distinguishing boundaries between plant species and their background is challenging. We tackle this issue by introducing a fuzzy loss within the segmentation model. Instead of utilizing one-hot encoded ground truth (GT), our model incorporates Gaussian filter refined GT, introducing stochasticity during training. First experimental results obtained on both our UHR dataset and a public dataset are presented, showing the relevance of the proposed methodology, as well as the need for future improvement.
dc.description.sponsorshipInteractions Plantes-Plantes Positives et Patrons spatiaux dans les résidus Post-mines des Pyrénées - ANR-19-CE02-0013en_US
dc.language.isoENen_US
dc.publisherIEEEen_US
dc.subject.enArtificial Intelligence (cs.AI)
dc.subject.enFOS: Computer and information sciences
dc.subject.enSemantic segmentation
dc.subject.enfuzzy loss
dc.subject.enultrahigh resolution
dc.subject.enplant detection
dc.subject.enComputer Vision and Pattern Recognition (cs.CV)
dc.title.enPlant detection from ultra high resolution remote sensing images: A Semantic Segmentation approach based on fuzzy loss
dc.typeCommunication dans un congrèsen_US
dc.identifier.doi10.1109/IGARSS53475.2024.10641972en_US
dc.subject.halInformatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV]en_US
dc.subject.halSciences de l'environnement/Ingénierie de l'environnementen_US
bordeaux.hal.laboratoriesEPOC : Environnements et Paléoenvironnements Océaniques et Continentaux - UMR 5805en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.conference.titleIEEE International Geoscience and Remote Sensing Symposium (IGARSS 2024)en_US
bordeaux.teamECOBIOCen_US
bordeaux.conference.cityAthènesen_US
bordeaux.import.sourcehal
hal.identifierhal-04778954
hal.version1
hal.invitednonen_US
hal.proceedingsouien_US
hal.conference.end2024-07-12
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2024&rft.au=PANDE,%20Shivam&UZUN,%20Baki&GUIOTTE,%20Florent&PHAM,%20Minh-Tan&CORPETTI,%20Thomas&rft.genre=unknown


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée