Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorTSUCHIDA, Ami
dc.contributor.authorGOUBET, Martin
dc.contributor.authorBOUTINAUD, Philippe
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorASTAFEVA, Iana
dc.contributor.authorNOZAIS, Victor
dc.contributor.authorHERVÉ, Pierre-Yves
hal.structure.identifierNeurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
dc.contributor.authorTOURDIAS, Thomas
hal.structure.identifierBordeaux population health [BPH]
dc.contributor.authorDEBETTE, Stephanie
hal.structure.identifierInstitut des Maladies Neurodégénératives [Bordeaux] [IMN]
dc.contributor.authorJOLIOT, Marc
dc.date.accessioned2025-01-06T13:09:22Z
dc.date.available2025-01-06T13:09:22Z
dc.date.issued2024-12-28
dc.identifier.issn2045-2322en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/204143
dc.description.abstractEnCerebral microbleeds (CMB) represent a feature of cerebral small vessel disease (cSVD), a prominent vascular contributor to age-related cognitive decline, dementia, and stroke. They are visible as spherical hypointense signals on T2*- or susceptibility-weighted magnetic resonance imaging (MRI) sequences. An increasing number of automated CMB detection methods being proposed are based on supervised deep learning (DL). Yet, the lack of open sharing of pre-trained models hampers the practical application and evaluation of these methods beyond specific data sources used in each study. Here, we present the SHIVA-CMB detector, a 3D Unet-based tool trained on 450 scans taken from seven acquisitions in six different cohort studies that included both T2*- and susceptibility-weighted MRI. In a held-out test set of 96 scans, it achieved the sensitivity, precision, and F1 (or Dice similarity coefficient) score of 0.67, 0.82, and 0.74, with less than one false positive detection per image (FPavg = 0.6) and per CMB (FPcmb = 0.15). It achieved a similar level of performance in a separate, evaluation-only dataset with acquisitions never seen during the training (0.67, 0.91, 0.77, 0.5, 0.07 for the sensitivity, precision, F1 score, FPavg, and FPcmb). Further demonstrating its generalizability, it showed a high correlation (Pearson's R = 0.89, p < 0.0001) with a visual count by expert raters in another independent set of 1992 T2*-weighted scans from a large, multi-center cohort study. Importantly, we publicly share both the pipeline ( https://github.com/pboutinaud/SHiVAi/ ) and pre-trained models ( https://github.com/pboutinaud/SHIVA-CMB/ ) to the research community to promote the active application and evaluation of our tool. We believe this effort will help accelerate research on the pathophysiology and functional consequences of CMB by enabling rapid characterization of CMB in large-scale studies.
dc.description.sponsorshipStopping cognitive decline and dementia by fighting covert cerebral small vessel disease - ANR-18-RHUS-0002en_US
dc.description.sponsorshipVaincre les maladies vasculaires cérébrales par un nouveau paradigme de prévention de précision et d'innovation thérapeutiqueen_US
dc.description.sponsorshipLaboratoire pour les applications en imagerie biomédicale - ANR-16-LCV2-0006en_US
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.title.enSHIVA-CMB: a deep-learning-based robust cerebral microbleed segmentation tool trained on multi-source T2*GRE- and susceptibility-weighted MRI
dc.title.alternativeSci Repen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1038/s41598-024-81870-5en_US
dc.subject.halSciences du Vivant [q-bio]/Santé publique et épidémiologieen_US
dc.identifier.pubmed39730628en_US
bordeaux.journalScientific Reportsen_US
bordeaux.page30901en_US
bordeaux.volume14en_US
bordeaux.hal.laboratoriesBordeaux Population Health Research Center (BPH) - UMR 1219en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionCNRS
bordeaux.teamELEANOR_BPHen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.import.sourcecrossref
hal.identifierhal-04867101
hal.version1
hal.date.transferred2025-01-22T10:36:51Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
workflow.import.sourcecrossref
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Scientific%20Reports&amp;rft.date=2024-12-28&amp;rft.volume=14&amp;rft.issue=1&amp;rft.spage=30901&amp;rft.epage=30901&amp;rft.eissn=2045-2322&amp;rft.issn=2045-2322&amp;rft.au=TSUCHIDA,%20Ami&amp;GOUBET,%20Martin&amp;BOUTINAUD,%20Philippe&amp;ASTAFEVA,%20Iana&amp;NOZAIS,%20Victor&amp;rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record