Show simple item record

dc.rights.licenseopenen_US
dc.contributor.authorALTINOGLU, Ipek
dc.contributor.authorABRIAT, Guillaume
dc.contributor.authorCARREAUX, Alexis
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorTORRES-SANCHEZ, Lucia
dc.contributor.authorPOIDEVIN, Mickael
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorKRASTEVA, Petya Violinova
dc.contributor.authorYAMAICHI, Yoshiharu
dc.date.accessioned2024-10-31T11:24:38Z
dc.date.available2024-10-31T11:24:38Z
dc.date.issued2022-01-12
dc.identifier.issn1553-7404en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/203079
dc.description.abstractEnIn rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation.
dc.language.isoENen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.title.enAnalysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators
dc.title.alternativePLOS Geneticsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1371/journal.pgen.1009991en_US
dc.subject.halChimie/Matériauxen_US
bordeaux.journalPLoS Geneticsen_US
bordeaux.volume18en_US
bordeaux.hal.laboratoriesCBMN : Chimie & de Biologie des Membranes & des Nano-objets - UMR 5248en_US
bordeaux.issue1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=PLoS%20Genetics&rft.date=2022-01-12&rft.volume=18&rft.issue=1&rft.eissn=1553-7404&rft.issn=1553-7404&rft.au=ALTINOGLU,%20Ipek&ABRIAT,%20Guillaume&CARREAUX,%20Alexis&TORRES-SANCHEZ,%20Lucia&POIDEVIN,%20Mickael&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record