Future trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au
hal.structure.identifier | Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB] | |
dc.contributor.author | RAYMOND, Sean | |
dc.contributor.author | KAIB, Nathan | |
hal.structure.identifier | Laboratoire d'Astrophysique de Bordeaux [Pessac] [LAB] | |
dc.contributor.author | SELSIS, Franck | |
hal.structure.identifier | Institut universitaire de France [IUF] | |
dc.contributor.author | BOUY, Herve | |
dc.date.accessioned | 2024-10-10T02:09:23Z | |
dc.date.available | 2024-10-10T02:09:23Z | |
dc.date.issued | 2024-01-27 | |
dc.identifier.issn | 0035-8711 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/202373 | |
dc.description.abstractEn | ABSTRACT Given the inexorable increase in the Sun’s luminosity, Earth will exit the habitable zone in ∼1 Gyr. There is a negligible chance that Earth’s orbit will change during that time through internal Solar System dynamics. However, there is a ∼ 1 per cent chance per Gyr that a star will pass within 100 au of the Sun. Here, we use N-body simulations to evaluate the possible evolutionary pathways of the planets under the perturbation from a close stellar passage. We find a ∼ 92 per cent chance that all eight planets will survive on orbits similar to their current ones if a star passes within 100 au of the Sun. Yet a passing star may disrupt the Solar System, by directly perturbing the planets’ orbits or by triggering a dynamical instability. Mercury is the most fragile, with a destruction rate (usually via collision with the Sun) higher than that of the four giant planets combined. The most probable destructive pathways for Earth are to undergo a giant impact (with the Moon or Venus) or to collide with the Sun. Each planet may find itself on a very different orbit than its present-day one, in some cases with high eccentricities or inclinations. There is a small chance that Earth could end up on a more distant (colder) orbit, through re-shuffling of the system’s orbital architecture, ejection into interstellar space (or into the Oort cloud), or capture by the passing star. We quantify plausible outcomes for the post-flyby Solar System. | |
dc.language.iso | en | |
dc.publisher | Oxford University Press (OUP): Policy P - Oxford Open Option A | |
dc.title.en | Future trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1093/mnras/stad3604 | |
dc.subject.hal | Physique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP] | |
dc.identifier.arxiv | 2311.12171 | |
bordeaux.journal | Monthly Notices of the Royal Astronomical Society | |
bordeaux.page | 6126-6138 | |
bordeaux.volume | 527 | |
bordeaux.hal.laboratories | Laboratoire d'Astrophysique de Bordeaux (LAB) - UMR 5804 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-04727886 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04727886v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2024-01-27&rft.volume=527&rft.issue=3&rft.spage=6126-6138&rft.epage=6126-6138&rft.eissn=0035-8711&rft.issn=0035-8711&rft.au=RAYMOND,%20Sean&KAIB,%20Nathan&SELSIS,%20Franck&BOUY,%20Herve&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |