Seed2LP: seed inference in metabolic networks for reverse ecology applications
GHASSEMI NEDJAD, Chabname
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
BOLTEAU, Mathieu
Laboratoire des Sciences du Numérique de Nantes [LS2N]
Combinatoire et Bioinformatique [LS2N - équipe COMBI]
Nantes Université [Nantes Univ]
Voir plus >
Laboratoire des Sciences du Numérique de Nantes [LS2N]
Combinatoire et Bioinformatique [LS2N - équipe COMBI]
Nantes Université [Nantes Univ]
GHASSEMI NEDJAD, Chabname
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
BOLTEAU, Mathieu
Laboratoire des Sciences du Numérique de Nantes [LS2N]
Combinatoire et Bioinformatique [LS2N - équipe COMBI]
Nantes Université [Nantes Univ]
Laboratoire des Sciences du Numérique de Nantes [LS2N]
Combinatoire et Bioinformatique [LS2N - équipe COMBI]
Nantes Université [Nantes Univ]
FRIOUX, Clémence
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
< Réduire
Pleiade, from patterns to models in computational biodiversity and biotechnology [PLEIADE]
Langue
en
Document de travail - Pré-publication
Ce document a été publié dans
2024-09-27
Résumé en anglais
A challenging problem in microbiology is to determine nutritional requirements of microorganisms and culture them, especially for the microbial dark matter detected solely with culture-independent methods. The latter foster ...Lire la suite >
A challenging problem in microbiology is to determine nutritional requirements of microorganisms and culture them, especially for the microbial dark matter detected solely with culture-independent methods. The latter foster an increasing amount of genomic sequences that can be explored with reverse ecology approaches to raise hypotheses on the corresponding populations. Building upon genome scale metabolic networks (GSMNs) obtained from genome annotations, metabolic models predict contextualised phenotypes using nutrient information. We developed the tool Seed2LP, addressing the inverse problem of predicting source nutrients, or seeds, from a GSMN and a metabolic objective. The originality of Seed2LP is its hybrid model, combining a scalable and discrete Boolean approximation of metabolic activity, with the numerically accurate flux balance analysis (FBA). Seed inference is highly customisable, with multiple search and solving modes, exploring the search space of external and internal metabolites combinations. Application to a benchmark of 107 curated GSMNs highlights the usefulness of a logic modelling method over a graph-based approach to predict seeds, and the relevance of hybrid solving to satisfy FBA constraints. Focusing on the dependency between metabolism and environment, Seed2LP is a computational support contributing to address the multifactorial challenge of culturing possibly uncultured microorganisms. Seed2LP is available on https://github.com/bioasp/seed2lp.< Réduire
Mots clés en anglais
Metabolic modelling
growth medium inference
uncultured bacteria
reverse ecology
network expansion
constraint-based modelling
Project ANR
Computationel models of crop plant microbial biodiversity - ANR-22-PEAE-0011
Abstraction des Réseaux de Réactions vers des Réseaux Booléens pour Améliorer l'Inférence et le Contrôle en Biologie des Systèmes - ANR-23-CE45-0008
Abstraction des Réseaux de Réactions vers des Réseaux Booléens pour Améliorer l'Inférence et le Contrôle en Biologie des Systèmes - ANR-23-CE45-0008
Origine
Importé de halUnités de recherche