Afficher la notice abrégée

hal.structure.identifierLaboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
dc.contributor.authorCAVALIÉ, Thibaut
hal.structure.identifierLaboratoire d'études spatiales et d'instrumentation en astrophysique [LESIA (UMR_8109)]
dc.contributor.authorVENOT, Olivia
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorSELSIS, Franck
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorHERSANT, Franck
hal.structure.identifierMax-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
dc.contributor.authorHARTOGH, P.
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorLECONTE, Jérémy
dc.date.issued2017
dc.identifier.issn0019-1035
dc.description.abstractEnThermochemical models have been used in the past to constrain the deep oxygen abundance in the gas and ice giant planets from tropospheric CO spectroscopic measurements. Knowing the oxygen abundance of these planets is a key to better understand their formation. These models have widely used dry and/or moist adiabats to extrapolate temperatures from the measured values in the upper troposphere down to the level where the thermochemical equilibrium between H2O and CO is established. The mean molecular mass gradient produced by the condensation of H2O stabilizes the atmosphere against convection and results in a vertical thermal profile and H2O distribution that departs significantly from previous estimates. We revisit O/H estimates using an atmospheric structure that accounts for the inhibition of the convection by condensation. We use a thermochemical network and the latest observations of CO in Uranus and Neptune to calculate the internal oxygen enrichment required to satisfy both these new estimates of the thermal profile and the observations. We also present the current limitations of such modeling.
dc.language.isoen
dc.publisherElsevier
dc.subject.enAbundances
dc.subject.enatmospheres
dc.subject.eninterior
dc.subject.enUranus
dc.subject.enNeptune
dc.title.enThermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: How convection inhibition can affect the derivation of deep oxygen abundances
dc.typeArticle de revue
dc.identifier.doi10.1016/j.icarus.2017.03.015
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPhysique [physics]/Physique [physics]/Physique Atmosphérique et Océanique [physics.ao-ph]
dc.identifier.arxiv1703.04358
bordeaux.journalIcarus
bordeaux.page1-16
bordeaux.volume291
bordeaux.peerReviewedoui
hal.identifierhal-04659762
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04659762v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Icarus&rft.date=2017&rft.volume=291&rft.spage=1-16&rft.epage=1-16&rft.eissn=0019-1035&rft.issn=0019-1035&rft.au=CAVALI%C3%89,%20Thibaut&VENOT,%20Olivia&SELSIS,%20Franck&HERSANT,%20Franck&HARTOGH,%20P.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée