Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire Modélisation avancée des systèmes thermiques et écoulements réels [MASTER]
hal.structure.identifierUniversité Sciences et Technologies - Bordeaux 1 [UB]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCALTAGIRONE, Jean-Paul
dc.date.accessioned2024-07-12T07:49:49Z
dc.date.available2024-07-12T07:49:49Z
dc.date.issued2024-01-10
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/200874
dc.description.abstractEnThe derivation of the Navier–Stokes equation in continuum mechanics leads to a number of consequences which are discussed in depth. In spite of its very high representativity of real flows, this equation presents some artefacts due to the whole notion of the continuous medium. An alternative to the Navier–Stokes equation is proposed, based on the conservation of energy per unit mass instead of momentum. The classical inertial frame of reference is replaced by a set of local frames of reference where interactions are treated as cause and effect. Invoking the principle of equivalence between energy and mass, the latter is eliminated from the quantities used in this new formalism. All quantities, variables and physical properties are thus expressed in units of mass. The law of motion is established in the form of the conservation of acceleration, an energy per unit of mass and length. The acceleration is thus written in the form of a Helmholtz–Hodge decomposition, in two terms, the first curl-free and the second divergence-free as a function of two potentials, scalar and vector. Maxwell’s idea of federating the laws of electrodynamics and magnetism to establish electromagnetism is taken up here to establish the new law of motion as a nonlinear wave equation. This approach makes it possible to demonstrate that this law is relativistic from the start. The form of the equation of motion in two Lagrangians gives access to symmetries related to the conservation of certain quantities according to Noether’s theorem.
dc.language.isoENen_US
dc.subject.enNavier–Stokes equations
dc.subject.enGeneral fluid mechanics
dc.title.enn alternative to the Navier–Stokes equation based on the conservation of acceleration
dc.typeArticle de revueen_US
dc.identifier.doi10.1017/jfm.2023.1017en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalJournal of Fluid Mechanics Papers (JFM)en_US
bordeaux.volume978en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04645867
hal.version1
hal.date.transferred2024-07-12T07:49:51Z
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exporttrue
dc.rights.ccCC BY-NC-NDen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Fluid%20Mechanics%20Papers%20(JFM)&rft.date=2024-01-10&rft.volume=978&rft.au=CALTAGIRONE,%20Jean-Paul&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée