Assessing the potential of BirdNET to infer European bird communities from large-scale ecoacoustic data
FUNOSAS, David
Ecosystèmes aquatiques et changements globaux [UR EABX]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
École nationale supérieure agronomique de Toulouse [ENSAT]
Station d'Ecologie Théorique et Expérimentale [SETE]
Voir plus >
Ecosystèmes aquatiques et changements globaux [UR EABX]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
École nationale supérieure agronomique de Toulouse [ENSAT]
Station d'Ecologie Théorique et Expérimentale [SETE]
FUNOSAS, David
Ecosystèmes aquatiques et changements globaux [UR EABX]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
École nationale supérieure agronomique de Toulouse [ENSAT]
Station d'Ecologie Théorique et Expérimentale [SETE]
Ecosystèmes aquatiques et changements globaux [UR EABX]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
École nationale supérieure agronomique de Toulouse [ENSAT]
Station d'Ecologie Théorique et Expérimentale [SETE]
ELGER, Arnaud
Ecosystèmes aquatiques et changements globaux [UR EABX]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
École nationale supérieure agronomique de Toulouse [ENSAT]
Station d'Ecologie Théorique et Expérimentale [SETE]
Ecosystèmes aquatiques et changements globaux [UR EABX]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
École nationale supérieure agronomique de Toulouse [ENSAT]
Station d'Ecologie Théorique et Expérimentale [SETE]
CAUCHOIX, Maxime
Station d'Ecologie Théorique et Expérimentale [SETE]
École nationale supérieure agronomique de Toulouse [ENSAT]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
Ecosystèmes aquatiques et changements globaux [UR EABX]
< Réduire
Station d'Ecologie Théorique et Expérimentale [SETE]
École nationale supérieure agronomique de Toulouse [ENSAT]
Centre de Recherches sur la Cognition Animale - UMR5169 [CRCA]
Ecosystèmes aquatiques et changements globaux [UR EABX]
Langue
en
Article de revue
Ce document a été publié dans
Ecological Indicators. 2024-05-20, vol. 164, p. 112146
Elsevier
Résumé en anglais
1. Passive acoustic monitoring has become increasingly popular as a practical and cost-effective way of obtaining highly reliable acoustic data in ecological research projects. Increased ease of collecting these data means ...Lire la suite >
1. Passive acoustic monitoring has become increasingly popular as a practical and cost-effective way of obtaining highly reliable acoustic data in ecological research projects. Increased ease of collecting these data means that, currently, the main bottleneck in ecoacoustic monitoring projects is often the time required for the manual analysis of passively collected recordings. In this study we evaluate the potential and current limitations of BirdNET-Analyzer v2.4, the most advanced and generic deep learning algorithm for bird recognition to date, as a tool to assess bird community composition through the automated analysis of large-scale ecoacoustic data. 2. To this end, we study 3 acoustic datasets comprising a total of 629 environmental soundscapes collected in 194 different sites spread across a 19° latitude span in Europe. We analyze these soundscapes using both BirdNET and manual listening by local expert birders, and we then compare the results obtained through the two methods to evaluate the performance of the algorithm both at the level of each single vocalization and for entire recording sequences (1, 5 or 10 min). 3. Since BirdNET provides a confidence score for each identification, minimum confidence thresholds can be used to filter out identifications with low scores, thus retaining only the most reliable ones. The volume of ecoacoustic data used in this study did not allow us to estimate species-specific minimum confidence thresholds for most taxa, so we instead used and evaluated global confidence thresholds selected for optimized results when consistently applied across all species. 4. Our analyses reveal that BirdNET identifications can be highly reliable if a sufficiently high minimum confidence threshold is used. However, the inevitable trade-off between precision and recall does not allow to obtain satisfactory results for both metrics at the same time. We found that F1-scores remain moderate (<0.5) for all datasets and confidence thresholds studied, and that acoustic datasets of extended duration seem to be currently necessary for BirdNET to provide a reliable and minimally comprehensive picture of the target bird community. We estimate, however, that the usage of species- and context-specific minimum confidence thresholds would allow to substantially improve the global performance benchmarks obtained in this study. 5. We conclude that a judicious use of AI-based identifications provided by BirdNET can represent a powerful method to assist in the assessment of bird community composition through the automated analysis of ecoacoustic data, especially when applied to acoustic datasets of extended duration.< Réduire
Mots clés en anglais
Automated species identification
Bird communities
BirdNET
Confidence threshold
Passive Acoustic Monitoring
Precision and recall
Soundscape
Origine
Importé de halUnités de recherche