Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorERCICEK, Fatma
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorHARSCOAT-SCHIAVO, Christelle
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorLAYRISSE, Patrick
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMARCHIVIE, Mathieu
dc.contributor.authorCARTIGNY, Yohann
dc.contributor.authorBRANDEL, Clement
dc.contributor.authorTASSAING, Thierry
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorMARRE, Samuel
hal.structure.identifierChimie et Biologie des Membranes et des Nanoobjets [CBMN]
dc.contributor.authorSUBRA-PATERNAULT, Pascale
dc.date.accessioned2024-05-21T10:35:38Z
dc.date.available2024-05-21T10:35:38Z
dc.date.conference2023-05-21
dc.identifier.isbnISBN 978-963-421-924-8en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/199960
dc.description.abstractEnCrystalline materials obtain many of their properties from the molecular arrangement within the solid. For active pharmaceutical ingredients, a recent strategy to alter such properties is the formation of cocrystals, i.e. molecular complexes of two entities in a solid state. Although cocrystal formation relies on molecular interactions, their presence is insufficient to predict if a cocrystallization will be successful. Cocrystals of S-naproxen (S-NPX) and RS-naproxen (RS-NPX) with 4,4’bipyridine (BiPY) have been produced by Manoj [1] by evaporation (S-NPX2:BiPY1 and RS-NPX2:BiPY1 respectively). Cocrystallization assisted by supercritical fluids is in its infancy, with only few systems investigated so far [2–4]. Two different processes have been used for cocrystallization, using supercritical CO2 as a solvent (CSS: Crystallization with Supercritical Solvent) and as an antisolvent (GAS: Gaseous AntiSolvent). This work presents for first time the formation of Naproxen-Bipyridine cocrystals by these two different processes and compares their performances.The effects of the initial NPX:BiPY molar ratio and of the processing conditions were investigated. The influence of naproxen form, i.e. racemic or enantiopure, was also investigated. Precipitation yields were determined and the produced powders were characterized by powder X-Ray Diffraction, Differential Scanning Calorimetry, InfraRed spectroscopy and HPLC.When S-NPX was processed, the powders obtained by the GAS method were of higher purity in S-NPX2:BiPY1 cocrystals than the products obtained by the CSS method, which presented also S-NPX homocrystals. The absence of BiPY in CSS product was explained by in-situ FTIR measurements of S-NPX and BiPY solubility in scCO2. By GAS, an excess of BiPY in the initial mixture was mandatory to produce pure S-NPX2:BiPY1 cocrystals whereas pure RS-NPX2:BiPY1 cocrystals were identically produced from mixtures of 2:2 and 2:1 NPX:BiPY initial ratio. In appropriate conditions, pure RS-NPX2:BiPY1 and S-NPX2:BiPY1 cocrystal powders were produced, with precipitation yields as high as 65% and 56% respectively. Processing mixtures of S-naproxen and RS-naproxen with bipyridine produced mixtures of enantiopure and racemic cocrystals, in proportions corresponding to the initial mixture ratio. Therefore, it did not allow any enrichment of the product in any of the naproxen enantiomers. References [1]K. Manoj, R. Tamura, H. Takahashi, H. Tsue, CrystEngComm. 16 (2014) 5811–5819. https://doi.org/10.1039/C3CE42415D.[2]C. Neurohr, A.-L. Revelli, P. Billot, M. Marchivie, S. Lecomte, S. Laugier, S. Massip, P. Subra-Paternault, J.Supercrit Fluids. 83 (2013) 78–85. https://doi.org/10.1016/j.supflu.2013.07.008.[3]B. Long, V. Verma, K.M. Ryan, L. Padrela, methods, J.Supercrit Fluids. 170 (2021). https://doi.org/10.1016/j.supflu.2020.105134.[4]I.A. Cuadra, A. Cabañas, J.A.R. Cheda, M. Türk, C. Pando, J.Supercrit Fluids. 160 (2020) https://doi.org/10.1016/j.supflu.2020.104813.
dc.description.sponsorshipApport du CO2 dans le contrôle de phase cristalline - ANR-18-CE07-0047en_US
dc.language.isoENen_US
dc.title.enCocrystallization of Naproxen and Bipyridine assisted by supercritical CO2.
dc.title.enCO2 solvent or CO2 antisolvent, what is the best process?
dc.typeCommunication dans un congrèsen_US
dc.subject.halSciences de l'ingénieur [physics]en_US
dc.subject.halChimieen_US
bordeaux.hal.laboratoriesCBMN : Chimie & de Biologie des Membranes & des Nano-objets - UMR 5248en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.conference.titleEUROPEAN MEETING SUPERCRITICAL FLUIDSen_US
bordeaux.title.proceedingProceedings 19th European Meeting on Supercritical Fluidsen_US
bordeaux.conference.cityBUDAPESTen_US
bordeaux.import.sourcehal
hal.identifierhal-04203052
hal.version1
hal.invitednonen_US
hal.proceedingsouien_US
hal.conference.organizerISASFen_US
hal.conference.end2023-05-24
hal.popularnonen_US
hal.audienceInternationaleen_US
hal.exportfalse
workflow.import.sourcehal
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ERCICEK,%20Fatma&HARSCOAT-SCHIAVO,%20Christelle&LAYRISSE,%20Patrick&MARCHIVIE,%20Mathieu&CARTIGNY,%20Yohann&rft.isbn=ISBN%20978-963-421-924-8&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée