Show simple item record

hal.structure.identifierModélisation et Simulation Numérique (en mécanique des fluides) [M2P2]
dc.contributor.authorLEFEVRE, Sebastien
hal.structure.identifierLaboratoire de Mécanique, Modélisation et Procédés Propres [M2P2]
dc.contributor.authorFERRASSE, Jean-Henry
hal.structure.identifierLaboratoire de Mécanique, Modélisation et Procédés Propres [M2P2]
dc.contributor.authorBOUTIN, Olivier
hal.structure.identifierEfficient runtime systems for parallel architectures [RUNTIME]
dc.contributor.authorSERGENT, Michelle
hal.structure.identifierS.A.R.L A3I [S.A.R.L A3I]
dc.contributor.authorFAUCHERAND, Rémy
hal.structure.identifierS.A.R.L A3I [S.A.R.L A3I]
dc.contributor.authorVIAND, Alain
dc.date.accessioned2024-04-15T09:56:59Z
dc.date.available2024-04-15T09:56:59Z
dc.date.issued2011-07
dc.identifier.issn0263-8762
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198879
dc.description.abstractEnThis study develops a coupling of energetic and experimental design approaches on a given configuration of wet air oxidation process (WAO), applied for wastewater containing a hard chemical oxygen demand (phenol for instance). Taking into account thermodynamic principles and process simulation, the calculation of minimum heat required by the process, exergetic efficiency and work balance is presented. Five parameters are considered: pressure (20–30 MPa); temperature (200–300 °C); chemical oxygen demand (23–143 g l−1); air ratio (1.2–2) and temperature of exiting steam utilities (160–200 °C). Using the surface response method, it appears that initial chemical oxygen demand and temperature are the two parameters that mainly influence the result. With the modelling, good conditions for the functioning of the presented process are the following: pressure of 19.4 MPa, temperature of 283 °C, chemical oxygen demand of 54.9 g l−1, air ratio of 1.7 and vapour temperature of 183 °C.
dc.language.isoen
dc.publisherElsevier
dc.subject.enEnergy efficiency
dc.subject.enExergy
dc.subject.enWet air oxidation process
dc.subject.enOptimisation
dc.subject.enExperimental design
dc.subject.enNumerical analysis
dc.title.enProcess optimisation using the combination of simulation and experimental design approach: Application to wet air oxidation
dc.typeArticle de revue
dc.identifier.doi10.1016/j.cherd.2010.12.009
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Mécanique des fluides [physics.class-ph]
bordeaux.journalChemical Engineering Research and Design
bordeaux.page1045–1055
bordeaux.volume89
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.issue7
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-01292658
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01292658v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Chemical%20Engineering%20Research%20and%20Design&rft.date=2011-07&rft.volume=89&rft.issue=7&rft.spage=1045%E2%80%931055&rft.epage=1045%E2%80%931055&rft.eissn=0263-8762&rft.issn=0263-8762&rft.au=LEFEVRE,%20Sebastien&FERRASSE,%20Jean-Henry&BOUTIN,%20Olivier&SERGENT,%20Michelle&FAUCHERAND,%20R%C3%A9my&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record