Show simple item record

hal.structure.identifierLaboratoire de Mathématiques Appliquées de Bordeaux [MAB]
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
dc.contributor.authorABGRALL, Remi
dc.date.accessioned2024-04-15T09:54:18Z
dc.date.available2024-04-15T09:54:18Z
dc.date.created2008
dc.date.issued2008
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198662
dc.description.abstractEnThis paper deals with the computation of some statistics of the solutions of linear and non linear PDEs by mean of a method that is simple and flexible. A particular emphasis is given on non linear hyperbolic type equations such as the Burger equation and the Euler equations. Given a PDE and starting from a description of the solution in term of a space variable and a (family) of random variables that may be correlated, the solution is numerically described by its conditional expectancies of point values or cell averages. This is done via a tessellation of the random space as in finite volume methods for the space variables. Then, using these conditional expectancies and the geometrical description of the tessellation, a piecewise polynomial approximation in the random variables is computed using a reconstruction method that is standard for high order finite volume space, except that the measure is no longer the standard Lebesgue measure but the probability measure. Starting from a given scheme for the deterministic version of the PDE, we use this reconstruction to formulate a scheme on the numerical approximation of the solution. This method enables maximum flexibility in term of the PDE and the probability measure. In particular, the scheme is non intrusive, can handle any type of probability measure, even with Dirac terms. The method is illustrated on ODEs, elliptic and hyperbolic problems, linear and non linear.
dc.language.isoen
dc.subject.enUncertainty quantification
dc.subject.endeterminstic methods
dc.subject.ennon linear PDEs
dc.subject.enBurgers and Euler equations
dc.title.enA simple, flexible and generic deterministic approach to uncertainty quantifications in non linear problems: application to fluid flow problems
dc.typeRapport
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.page26
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.reportrr
hal.identifierinria-00325315
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00325315v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2008&rft.spage=26&rft.epage=26&rft.au=ABGRALL,%20Remi&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record