Constructing Incremental Sequences in Graphs
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
dc.contributor.author | KLASING, Ralf | |
hal.structure.identifier | Informatique, Biologie Intégrative et Systèmes Complexes [IBISC] | |
dc.contributor.author | LAFOREST, Christian | |
hal.structure.identifier | SFU Discrete Mathematics Group [SFU-DMG] | |
dc.contributor.author | PETERS, Joseph G. | |
hal.structure.identifier | Informatique, Biologie Intégrative et Systèmes Complexes [IBISC] | |
dc.contributor.author | THIBAULT, Nicolas | |
dc.date.accessioned | 2024-04-15T09:53:47Z | |
dc.date.available | 2024-04-15T09:53:47Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 1718-3235 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/198627 | |
dc.description.abstractEn | Given a weighted graph G=(V,E,w), we investigate the problem of constructing a sequence of n=|V| subsets of vertices M_1,...,M_n (called groups) with small diameters, where the diameter of a group is calculated using distances in G. The constraint on these n groups is that they must be incremental: $M_1\subsetM_2 \subset...\subsetM_n=V$. The cost of a sequence is the maximum ratio between the diameter of each group $M_i$ and the diameter of a group $N_i^*$ with $i$ vertices and minimum diameter: $\max_2 \leqi \leqn \left \fracD(M_i)D(N_i^*) \right$. This quantity captures the impact of the incremental constraint on the diameters of the groups in a sequence. We give general bounds on the value of this ratio and we prove that the problem of constructing an optimal incremental sequence cannot be solved approximately in polynomial time with an approximation ratio less than 2 unless $P = NP$. Finally, we give a 4-approximation algorithm and we show that the analysis of our algorithm is tight. | |
dc.language.iso | en | |
dc.publisher | Preeminent Academic Facets | |
dc.title.en | Constructing Incremental Sequences in Graphs | |
dc.type | Article de revue | |
dc.subject.hal | Sciences cognitives/Informatique | |
dc.subject.hal | Informatique [cs]/Recherche opérationnelle [cs.RO] | |
dc.subject.hal | Informatique [cs]/Algorithme et structure de données [cs.DS] | |
dc.subject.hal | Informatique [cs]/Mathématique discrète [cs.DM] | |
dc.subject.hal | Informatique [cs]/Informatique et théorie des jeux [cs.GT] | |
bordeaux.journal | Algorithmic Operations Research | |
bordeaux.page | 1--7 | |
bordeaux.volume | 1 | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00341373 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00341373v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Algorithmic%20Operations%20Research&rft.date=2006&rft.volume=1&rft.issue=2&rft.spage=1--7&rft.epage=1--7&rft.eissn=1718-3235&rft.issn=1718-3235&rft.au=KLASING,%20Ralf&LAFOREST,%20Christian&PETERS,%20Joseph%20G.&THIBAULT,%20Nicolas&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |