Show simple item record

hal.structure.identifierEDF [EDF]
dc.contributor.authorBARRAULT, Maxime
hal.structure.identifierEDF [EDF]
dc.contributor.authorLATHUILIÈRE, Bruno
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorRAMET, Pierre
hal.structure.identifierAlgorithms and high performance computing for grand challenge applications [SCALAPPLIX]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorROMAN, Jean
dc.date.accessioned2024-04-15T09:53:08Z
dc.date.available2024-04-15T09:53:08Z
dc.date.issued2008
dc.date.conference2008
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198583
dc.description.abstractEnThe simulation of the neutron transport inside a nuclear reactor leads to the computation of the lowest eigen pair of a simplified transport operator. This computation is done by a power inverse algorithm accelerated by a Chebyshev polynomials based process. At each iteration, a large linear system is solved inexactly by a block Gauss-Seidel algorithm. For our applications, one Gauss-Seidel iteration is already sufficient to ensure the right convergence of the inverse power algorithm. For the approximate resolution of the linear system at each inverse power iteration, we propose a non overlapping domain decomposition based on the introduction of Lagrange multipliers in order to: - get a parallel algorithm, which allows to circumvent memory consumption problem and to reduce the computational time; - deal with different numerical approximations in each subdomain; - minimize the code modifications in our industrial solver. When the Chebyshev acceleration process is switched off, the method performs well on up to 100 processors for an industrial test case. It exhibits a good efficiency which allows us to realize some computations beyond the reach of standard workstations. Besides, we study the efficiency of the Chebyshev acceleration process in our domain decomposition method.
dc.language.isoen
dc.title.enA Domain Decomposition Method Applied to Large Eigenvalue Problems in Neutron Physics
dc.typeCommunication dans un congrès
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titlePMAA'08
bordeaux.countryCH
bordeaux.conference.cityNeuchatel
bordeaux.peerReviewedoui
hal.identifierinria-00346025
hal.version1
hal.invitednon
hal.proceedingsnon
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00346025v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2008&rft.au=BARRAULT,%20Maxime&LATHUILI%C3%88RE,%20Bruno&RAMET,%20Pierre&ROMAN,%20Jean&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record