Multi-object shape estimation and tracking from silhouette cues
hal.structure.identifier | University of North Carolina [Chapel Hill] [UNC] | |
hal.structure.identifier | Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich] | |
dc.contributor.author | GUAN, Li | |
hal.structure.identifier | Visualization and manipulation of complex data on wireless mobile devices [IPARLA] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | FRANCO, Jean-Sébastien | |
hal.structure.identifier | University of North Carolina [Chapel Hill] [UNC] | |
hal.structure.identifier | Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich] | |
dc.contributor.author | POLLEFEYS, Marc | |
dc.date.accessioned | 2024-04-15T09:52:53Z | |
dc.date.available | 2024-04-15T09:52:53Z | |
dc.date.issued | 2008 | |
dc.date.conference | 2008-06-24 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/198560 | |
dc.description.abstractEn | This paper deals with the 3D shape estimation from silhouette cues of multiple moving objects in general indoor or outdoor 3D scenes with potential static obstacles, using multiple calibrated video streams. Most shape-from-silhouette techniques use a two-classification of space occupancy and silhouettes, based on image regions that match or disagree with a static background appearance model. Binary silhouette information becomes insufficient to unambiguously carve 3D space regions as the number and density of dynamic objects increases. In such difficult scenes, multi-view stereo methods suffer from visibility problems, and rely on color calibration procedures tedious to achieve outdoors. We propose a new algorithm to automatically detect and reconstruct scenes with a variable number of dynamic objects. Our formulation distinguishes between m different shapes in the scene by using automatically learnt view-specific appearance models, eliminating the color calibration requirement. Bayesian reasoning is then applied to solve the m-shape occupancy problem, with m updated as objects enter or leave the scene. Results show that this method yields multiple silhouette-based estimates that drastically improve scene reconstructions over traditional two-label silhouette scene analysis. This enables the method to also efficiently deal with multi-person tracking problems. | |
dc.description.sponsorship | Data trAnsfert for Large Interactive Applications - ANR-06-MDCA-0003 | |
dc.language.iso | en | |
dc.title.en | Multi-object shape estimation and tracking from silhouette cues | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.1109/CVPR.2008.4587786 | |
dc.subject.hal | Informatique [cs]/Vision par ordinateur et reconnaissance de formes [cs.CV] | |
bordeaux.page | 1--8 | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | IEEE Conference on Computer Vision and Pattern Recognition, 2008. CVPR 2008. | |
bordeaux.country | US | |
bordeaux.conference.city | Anchorage | |
bordeaux.peerReviewed | oui | |
hal.identifier | inria-00349114 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00349114v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2008&rft.spage=1--8&rft.epage=1--8&rft.au=GUAN,%20Li&FRANCO,%20Jean-S%C3%A9bastien&POLLEFEYS,%20Marc&rft.genre=unknown |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |