Afficher la notice abrégée

hal.structure.identifierDepartment of Computer Science & Engineering [Jadavpur]
dc.contributor.authorMAULIK, Ujjwal
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierModels and Algorithms for the Genome [ MAGNOME]
hal.structure.identifierDepartment of Information Technology [GCELT]
dc.contributor.authorSARKAR, Anasua
dc.date.accessioned2024-04-15T09:47:51Z
dc.date.available2024-04-15T09:47:51Z
dc.date.issued2010-01
dc.identifier.issn0169-2968
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198132
dc.description.abstractEnA hybrid unsupervised learning algorithm, which is termed as Parallel Rough-based Archived Multi-Objective Simulated Annealing (PARAMOSA), is proposed in this article. It comprises a judicious integration of the principles of the rough sets theory and the scalable distributed paradigm with the archived multi-objective simulated annealing approach. While the concept of boundary approximations of rough sets in this implementation, deals with the incompleteness in the dynamic classification method with the quality of classification coefficient as the classificatory competencemeasurement, the time-efficient parallel approach enables faster convergence of the Pareto-archived evolution strategy. It incorporates both the rough set-based dynamic archive classifi- cation method and the distributed implementation as a two-phase speedup strategy in this algorithm. A measure of the amount of domination between two solutions has been incorporated in this work to determine the acceptance probability of a new solution with an improvement in the spread of the non-dominated solutions in the Pareto-front by adopting rough sets theory. A complexity analysis of the proposed algorithm is provided. An extensive comparative study of the proposed algorithm with three other existing and well-known Multi-Objective Evolutionary Algorithms (MOEAs) demonstrate the effectiveness of the former with respect to four existing performance metrics and eleven benchmark test problems of varying degrees of difficulties. The superiority of this new parallel implementation over other algorithms also has been demonstrated in timing, which achieves a near optimal speedup with a minimal communication overhead.
dc.language.isoen
dc.publisherPolskie Towarzystwo Matematyczne
dc.title.enEvolutionary Rough Parallel Multi-Objective Optimization Algorithm
dc.typeArticle de revue
dc.identifier.doi10.3233/FI-2010-237
dc.subject.halInformatique [cs]/Bio-informatique [q-bio.QM]
dc.subject.halSciences du Vivant [q-bio]/Bio-Informatique, Biologie Systémique [q-bio.QM]
bordeaux.journalFundamenta Informaticae
bordeaux.page13-27
bordeaux.volume99
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierinria-00563544
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00563544v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Fundamenta%20Informaticae&rft.date=2010-01&rft.volume=99&rft.issue=1&rft.spage=13-27&rft.epage=13-27&rft.eissn=0169-2968&rft.issn=0169-2968&rft.au=MAULIK,%20Ujjwal&SARKAR,%20Anasua&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée