Show simple item record

hal.structure.identifierLinguistic signs, grammar and meaning: computational logic for natural language [SIGNES]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorSALVATI, Sylvain
dc.date.accessioned2024-04-15T09:47:51Z
dc.date.available2024-04-15T09:47:51Z
dc.date.issued2011-02-07
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198131
dc.description.abstractEnIn this paper, we aim at understanding the derivations of minimalist grammars without the shortest move constraint. This leads us to study the relationship of those derivations with logic. In particular we show that the membership problem of minimalist grammars without the shortest move constraint is as difficult as provability in Multiplicative Exponential Linear Logic. As a byproduct, this result gives us a new representation of those derivations with linear $\lambda$-terms. We show how to interpret those terms in a homomorphic way so as to recover the sentence they analyse. As the homorphisms we describe are rather evolved, we turn to a proof-net representation and explain how Monadic Second Order Logic and related techniques allow us both to define those proof-nets and to retrieve the sentence they analyse.
dc.language.isoen
dc.title.enMinimalist Grammars in the Light of Logic
dc.typeRapport
dc.subject.halInformatique [cs]/Théorie et langage formel [cs.FL]
bordeaux.page39
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.reportrr
hal.identifierinria-00563807
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00563807v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2011-02-07&rft.spage=39&rft.epage=39&rft.au=SALVATI,%20Sylvain&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record