Show simple item record

hal.structure.identifierCentre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
hal.structure.identifierParallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
dc.contributor.authorMAIRE, P.H.
hal.structure.identifierCentre d'Etudes Lasers Intenses et Applications [CELIA]
dc.contributor.authorBREIL, Jérôme
dc.date.accessioned2024-04-15T09:47:16Z
dc.date.available2024-04-15T09:47:16Z
dc.date.created2011
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198083
dc.description.abstractEnIn this paper, we describe a high-order cell-centered finite volume method for solving anisotropic diffusion on two-dimensional unstructured grids. The resulting numerical scheme, named CCLAD (Cell-Centered LAgrangian Diffusion), is characterized by a local stencil and cell-centered unknowns. It is devoted to the resolution of diffusion equation on distorted grids in the context of Lagrangian hydrodynamics wherein a strong coupling occurs between gas dynamics and diffusion. The space discretization relies on the introduction of two half-edge normal fluxes and two half-edge temperatures per cell interface using the partition of each cell into sub-cells. For each cell, the two half-edge normal fluxes attached to a node are expressed in terms of the half-edge temperatures impinging at this node and the cell-centered temperature. This local flux approximation can be derived through the use of either a sub-cell variational formulation or a finite difference approximation, leading to the two variants CCLADS and CCLADNS. The elimination of the half-edge temperatures is performed locally at each node by solving a small linear system which is obtained by enforcing the continuity condition of the normal heat flux across sub-cell interface impinging at the node. The accuracy and the robustness of the present scheme is assessed by means of various numerical test cases.
dc.language.isoen
dc.subject.enAnisotropic diffusion
dc.subject.enisotropic diffusion
dc.subject.encell-centered scheme
dc.subject.enhigh-order finite volume method
dc.subject.entwo-dimensional unstructured grid
dc.subject.encylindrical geometry
dc.title.enA high-order finite volume cell-centered scheme for anisotropic diffusion on two-dimensional unstructured grids
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00605548
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00605548v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=MAIRE,%20P.H.&BREIL,%20J%C3%A9r%C3%B4me&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record