Afficher la notice abrégée

hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorAVAL, Jean-Christophe
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
dc.contributor.authorDUCHON, Philippe
dc.date.accessioned2024-04-15T09:47:01Z
dc.date.available2024-04-15T09:47:01Z
dc.date.created2011
dc.date.issued2013
dc.identifier.issn1879-2294
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/198057
dc.description.abstractEnIn this work, we put to light a formula that relies the number of fully packed loop configurations (FPLs) associated to a given coupling pi to the number of half-turn symmetric FPLs (HTFPLs) of even size whose coupling is a punctured version of the coupling pi. When the coupling pi is the coupling with all arches parallel pi0 (the ''rarest'' one), this formula states the equality of the number of corresponding HTFPLs to the number of cyclically-symmetric plane partition of the same size. We provide a bijective proof of this fact. In the case of HTFPLs odd size, and although there is no similar expression, we study the number of HTFPLs whose coupling is a slit version of pi_0, and put to light new puzzling enumerative coincidence involving countings of tilings of hexagons and various symmetry classes of FPLs.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFully packed loop configurations
dc.subject.enalternating sign matrices
dc.subject.entilings of hexagons
dc.title.enHalf-turn symmetric FPLs with rare couplings and tilings of hexagons
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Combinatoire [math.CO]
dc.identifier.arxiv1109.0366
bordeaux.journalTheoretical Computer Science
bordeaux.page143-152
bordeaux.volume502
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00618319
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00618319v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Theoretical%20Computer%20Science&rft.date=2013&rft.volume=502&rft.spage=143-152&rft.epage=143-152&rft.eissn=1879-2294&rft.issn=1879-2294&rft.au=AVAL,%20Jean-Christophe&DUCHON,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée