On Power-Law Distributed Balls in Bins and its Applications to View Size Estimation
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | ATSONIOS, Ioannis | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | BEAUMONT, Olivier | |
hal.structure.identifier | Algorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE] | |
hal.structure.identifier | Laboratoire Bordelais de Recherche en Informatique [LaBRI] | |
dc.contributor.author | HANUSSE, Nicolas | |
hal.structure.identifier | Machine Learning and Optimisation [TAO] | |
hal.structure.identifier | Laboratoire de Recherche en Informatique [LRI] | |
dc.contributor.author | KIM, Yusik | |
dc.date.accessioned | 2024-04-15T09:46:59Z | |
dc.date.available | 2024-04-15T09:46:59Z | |
dc.date.created | 2011 | |
dc.date.issued | 2011-12 | |
dc.date.conference | 2011-12 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/198055 | |
dc.description.abstractEn | The view size estimation plays an important role in query optimization. It has been observed that many data follow a power law distribution. In this paper, we consider the balls in bins problem where we place balls into $N$ bins when the bin selection probabilities follow a power law distribution. As a generalization to the coupon collector's problem, we address the problem of determining the expected number of balls that need to be thrown in order to have at least one ball in each of the $N$ bins. We prove that $\Theta(\frac{N^\alpha \ln N}{c_N^{\alpha}})$ balls are needed to achieve this where $\alpha$ is the parameter of the power law distribution and $c_N^{\alpha}=\frac{\alpha-1}{\alpha-N^{\alpha-1}}$ for $\alpha \neq 1$ and $c_N^{\alpha}=\frac{1}{\ln N}$ for $\alpha=1$. Next, when fixing the number of balls that are thrown to $T$, we provide closed form upper and lower bounds on the expected number of bins that have at least one occupant. For $n$ large and $\alpha>1$, we prove that our bounds are tight up to a constant factor of $\left(\frac{\alpha}{\alpha-1}\right)^{1-\frac{1}{\alpha}} \leq e^{1/e} \simeq 1.4$. | |
dc.language.iso | en | |
dc.subject.en | Power Law | |
dc.subject.en | View Size Estimation | |
dc.subject.en | Balls into Bins | |
dc.title.en | On Power-Law Distributed Balls in Bins and its Applications to View Size Estimation | |
dc.type | Communication dans un congrès | |
dc.subject.hal | Informatique [cs]/Calcul parallèle, distribué et partagé [cs.DC] | |
bordeaux.hal.laboratories | Laboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | ISAAC | |
bordeaux.country | JP | |
bordeaux.conference.city | Yokohama | |
bordeaux.peerReviewed | oui | |
hal.identifier | inria-00618785 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00618785v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2011-12&rft.au=ATSONIOS,%20Ioannis&BEAUMONT,%20Olivier&HANUSSE,%20Nicolas&KIM,%20Yusik&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |